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Abstract

At long horizons, multiplicative compounding induces strong-to-extreme positive skew-

ness into stock returns; the magnitude of the effect is primarily determined by single-

period volatility. Consequently, at horizons greater than five years, returns –individual

or portfolio– will be positively skewed under reasonable parametrizations. From an

investor perspective, the strong positive skewness implies that the mean compound

return will serve as a poor guide for typical long-horizon outcomes. Moreover, the

large effects of compounding on higher-order moments are shown to affect the validity

of Taylor expansions used to approximate preferences for skewness, when applied to

returns of annual or longer horizons.
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1 Introduction

Individual investors typically have long investment horizons. In the 2019 Survey of Consumer

Finances, almost 70% of households report to have an investment horizon that spans at least

a few years, and 63% of these report a horizon longer than 5 years.1 For certain saving

purposes like retirement savings, the relevant horizon can easily span over several decades.

Therefore, understanding the properties of returns over such horizons is important.

A long-run investor collects the total compound returns over the investment horizon.

The moments of such long-run returns are non-trivial functions of the moments of short-run

period-by-period returns. This is particularly true for higher-order moments such as skew-

ness. Even under the simplest assumption of independently and identically (iid) distributed

period returns, the single-period skewness does not scale with the investment horizon in

a straightforward manner. We show in this paper that skewness becomes a characterizing

feature of long-run return distributions. Therefore, understanding the asymmetry implied

by this skewness is key to understanding the properties of long-horizon returns.

Empirically, Bessembinder (2018) shows that long-run compound stock returns behave

very differently from short-run (monthly or annual) returns. Through simulation exercises,

he illustrates how compounding induces strong positive skewness into multiperiod returns

– even if the single-period returns are symmetric. While Bessembinder (2018) primarily

focuses on individual stocks, his simulation results suggest that the skew-inducing effect of

compounding should also be present in aggregate returns, albeit to a much lesser extent. In

stark contrast, Neuberger and Payne (2021) argue that long-run (aggregate) stock returns

are substantially negatively skewed.

In this paper, we aim to shed more light on the properties of long-run compound returns.

We start by deriving a theoretical formula for the skewness (and other higher-order moments)

of compound returns in an iid setting, given the moments of one-period (i.e., short-run)

returns. The clear conclusion from the theoretical results is that compounding inevitably

leads to positively skewed long-run returns. The strength of the skew-inducing effect of

compounding depends primarily on the level of volatility in the single-period return – the

higher the volatility, the stronger the effect – and is not qualitatively affected by potential

asymmetries in the single-period return distribution. The skewness of 5-year market returns

lies in the range of 1 to 3, where skewness values around 1 correspond to low volatility

markets (17% yearly volatility), and skewness values around 3 are representative of high

1The survey asks the following question: “In planning or budgeting your saving and spending, which
of the time periods is most important to you?” with the choices being: “1. Next few months, 2. Next
year, 3. Next few years, 4. Next 5-10 years, 5. Longer than 10 years.” The data are available at
https://www.federalreserve.gov/econres/scfindex.htm.
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volatility markets (30% yearly volatility). If 30-year market returns are considered instead,

the corresponding skewness values end up in a range from about 5 (for low-volatility markets)

to 30 (for higher volatility markets). Individual stocks are more volatile than aggregate

markets, and therefore the skew-inducing effect of compounding is considerably stronger in

the case of individual stock returns. The skewness of 5-year stock returns can easily exceed

10, and the skewness of 30-year stock returns can be in the order of millions. As the last

result shows, compounding leads to extreme positive skewness in the long-run returns for

individual stocks.

The above results are derived in an iid setting. Deviations from the iid assumption do

have some quantitative effects on the skewness of long-horizon returns, but do not change

the overall conclusions. We consider the cases of serially correlated single-period returns

and conditional heteroskedasticity. Starting with serial correlation, our analytical results

show that even large degrees of mean reversion (or mean aversion) in returns cannot affect

the qualitative conclusions from the iid setting. In the case of conditional heteroskedasticity,

analytical results appear elusive, but simulation results provide clear guidance. Time-varying

volatility alone has little effect on long-run skewness compared to the iid case. When time-

varying volatility is coupled with the leverage effect – where low (negative) returns predict

higher future volatility – there is an effect. For returns with volatilities and leverage similar

to that observed in U.S. market returns, the leverage effect has a noticeable negative impact

on the skewness of long-horizon returns. However, the effect is not strong enough to change

the qualitative conclusions from the iid setting. Compound 5-year returns are still clearly

positively skewed, and at the 30-year horizon, using parameter values relevant for the U.S.

market, compound returns from the leverage model have a skewness of about 4, compared

to the iid case that has a skewness of about 5. To summarize, deviations from the iid

assumption do have an effect on the skewness of long-horizon returns, but it is not strong

enough to change the general conclusions from the iid setting.

The skewness of long-horizon returns impacts the estimation of this skewness as well.

Joanes and Gill (1998) point out that for non-normal distributions, the skewness estimator

is typically biased. Since long-horizon returns can be highly non-normal, assessing the prop-

erties of the estimator in this context becomes an important issue. We rely on simulations

to assess the small sample properties of the skewness estimator, and derive its analytical

asymptotic distribution to study the large sample properties. The results show that direct

empirical estimation of skewness is mostly limited to annual or shorter horizons. Due to

available sample sizes, skewness estimates will be biased for longer horizons both for market

returns (where only time-series data are available) and for individual stock returns (where

cross-sectional data are also available). For horizons longer than one year, sufficient sam-
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ple sizes are thus typically only available in simulation settings. However, even simulations

have to be carried out with caution for long-horizon returns. For low-volatility returns (e.g.,

market returns), simulated sample sizes in the order of millions might be needed, which is

considerably larger than what is used in typical simulation studies. For individual stocks,

it is virtually impossible to obtain useful simulation evidence at horizons greater than 15

years. In these cases, one can only rely on theoretical results.

The likely positive skewness of long-horizon returns has been noted in previous papers.

Arditti and Levy (1975) show that compounding induces positive skewness into multiperiod

returns, but they only analyze the iid case and do not recognize the dramatic long-run ef-

fects, since they only consider horizons up to 20 months. Bessembinder (2018) and Fama

and French (2018) rely on simulations to study the distribution of long-run returns. How-

ever, given our results on the difficulties of estimating skewness, simulation-based evidence

can potentially be misleading, especially from relatively small simulated samples, and our

theoretical results provide an important foundation for understanding long-run returns. We

offer several additional insights relative to previous literature, including detailed discussion

on (i) the determinants of long-run skewness (i.e., the first order importance of single-period

volatility), (ii) the problems of the skewness estimator in the context of long-run returns,

(iii) a comparison to other measures of asymmetry, and (iv) some important implications for

portfolio choice that, to our knowledge, has not been previously discussed.

While we focus on the standard (moment-based) skewness of simple returns throughout

the paper, other measures have also been used to describe the asymmetry of return distribu-

tions. Kim and White (2004) and Ghysels et al. (2016) advocate the use of quantile-based

measures, Campbell and Hentschel (1992) and Neuberger (2012) focus on the skewness of

log returns, and Neuberger and Payne (2021) develop a new measure of return asymme-

try. We derive analytical formulas of these measures for long-run returns in a setting where

single-period returns are iid, and we rely on simulations to assess the effect of certain devi-

ations from the iid assumption. We show that, when interpreted correctly, these alternative

measures all lead to conclusions consistent with those from the standard skewness measure

regarding the asymmetry of long-horizon return distributions.

Specifically, a clear distinction has to be made between the distributions of simple re-

turns and log returns over long horizons. Since the investor collects the simple return from

the investment, the log return is only useful to the extent that it provides valuable infor-

mation about the corresponding simple return.2 But for long horizons, the distributions of

2For very short horizons (i.e., daily and intra-daily returns), the simple and log returns correspond to each
other closely, so the distribution of log returns will be informative about the simple returns. E.g., if daily
log returns have a significant negative skew, the corresponding daily simple returns will also be negatively
skewed.

3



simple and corresponding log returns have very different shapes. In particular, if simple re-

turns are log-normal, then they are positively skewed, but the skewness of the corresponding

log returns is always zero. Heuristically, the skewness of log returns therefore provides an

interpretation relative to log-normality. Negative skewness of long-horizon log returns indi-

cates that the corresponding simple returns are less skewed than a comparable log-normal

distribution. However, those corresponding simple returns can still feature a considerable

positive skewness, since log-normality implies a high (potentially extreme) positive skewness

for long-horizon simple returns. We show that this is indeed the case. Some model spec-

ifications (e.g., stochastic volatility with a strong leverage effect) can lead to considerable

negative skewness in even 10- or 20-year log returns, but the corresponding simple returns

will feature a high positive skewness.

This also helps to resolve the seeming contradiction with Neuberger and Payne (2021),

who argue that long-run stock market returns are substantially negatively skewed. The

skewness measure developed by Neuberger and Payne (2021) is different from the skewness

of simple returns or the skewness of log returns, but it also takes the value of zero in the case

of log-normal simple returns (just as the skewness of log returns). When long-run market

returns are negatively skewed in the Neuberger and Payne (2021) sense, this therefore implies

that the returns are less skewed than if they were log-normally distributed, but they can in

fact still be (strongly) positively skewed when the standard measure of skewness for simple

returns is considered.

Our analysis thus clearly points in one direction: For longer horizons, compound (simple)

returns are positively skewed. From an investor perspective, the most important immedi-

ate implication of this strong positive skewness is that the long-run mean return (i.e., the

compounded mean single-period return) serves as an increasingly poor guide for the typi-

cal outcome of a long-horizon investment. To illustrate this point, consider the frequently

quoted rule-of-thumb that if an asset delivers a 7% annual expected return, it takes 10 years

to double the initial investment. This statement is valid in expected terms, but it does not

take into account the shape of the long-run return distribution. If the asset has a 17% annual

volatility (like the U.S. market), there is a 50% chance that the initial investment is doubled

only after 13 years, and there is a 30% chance that it takes at least 20 years. If the annual

volatility is 30% instead (typical for emerging markets), there is a 50% chance that it takes

more than 22 years to double the initial investment, and with a 30% probability it takes

more than 59 years, despite the fact that in expectation the investment doubles in 10 years.3

An understanding of the likely long-run outcomes of an investment therefore requires con-

siderably more mental effort than the corresponding short-run exercise. Typical investment

3The numbers in this illustration are based on the assumption that monthly returns are iid log-normal.
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advertisements or prospectuses will mention average annual returns and volatility. Trans-

forming these into a meaningful characterization of the distribution of 10- or 30-year returns

is clearly well beyond the capabilities of most investors. Ensthaler et al. (2018) illustrate

how these problems play out in an experimental setting, and show that the participants

almost completely fail to anticipate the asymmetry that arises in the long-run compound

returns.

From a more formal perspective, the skew-inducing effect of compounding can also eas-

ily result in misleading conclusions. We consider the standard practice of using third- or

fourth-order Taylor expansions of utility functions to (approximately) take into account the

skewness (and kurtosis) preferences of a risk-averse investor (see, among others, Kraus and

Litzenberger, 1976; Dittmar, 2002; Guidolin and Timmermann, 2008; Martellini and Zie-

mann, 2010; or Neuberger and Payne, 2021). As is evident from the Taylor expansion, a

standard investor prefers more (positive) skewness to less.

Suppose a long-run investor uses the approximated expected utility over terminal wealth

to rank different investment opportunities. Specifically, suppose there are two assets that

both have iid period returns and that differ only in their single-period volatilities. Intuitively,

a risk-averse investor should prefer the lower-volatility asset, regardless of investment horizon.

However, since the skewness of long-run returns is strongly increasing in volatility, using the

third-order utility approximation, a risk-averse investor might end up ranking the high-

volatility asset over the low-volatility asset. That is, the strong skew-inducing effect of

compounding makes the high-volatility asset seem more attractive to a long-run investor

using the third-order Taylor approximation. We emphasize that this is indeed the “wrong”

conclusion, since the exact utility calculations show that the long-run investor actually prefers

the low-volatility asset, a result we prove formally.

A natural reaction to this finding is to argue that one should instead use a fourth-order

expansion, to achieve a better approximation. In this case, preferences over kurtosis are

also accounted for. This may help in some cases, but it does not provide a general solution.

Kurtosis also grows with the investment horizon, and its increase will be affected by the

lower-order moments, including skewness. In an analogous manner to what happens in

the third-order expansion case, the fourth-order expansion can therefore also lead to the

wrong conclusion. Since all higher-order moments increase with horizon, there is generally

little hope to solve the approximation problem by adding further terms in the expansion.4

4These findings are related to the analysis by Kane (1982), who makes the observation that the portfolio
allocation decision between a risky and a risk-free asset, based on a third-order Taylor approximation of the
utility function, lacks an interior solution when the skewness of the risky asset exceeds a certain threshold.
In this case, the solution using only the mean and variance tradeoff will be superior, and Kane attributes the
failure of the third-order approximation to a neglect of higher order moments. While this is clearly formally
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Importantly, these “approximation errors” do not only occur for very long horizons. We

show that they can already occur at an annual investment horizon, with the implication

that using Taylor approximations for utility functions based on annual return statistics can

be misleading.

2 Skewness of compound returns

2.1 The case of iid returns

We start by deriving a general formula for the higher-order moments of compound returns,

given the short-run (one-period) moments, and assuming that the period-returns are in-

dependently and identically distributed (iid). While the result applies to all higher-order

moments, we focus the discussion on skewness.

Let x represent the one-period gross return on a given asset or portfolio. Throughout the

paper, we will denote the expected value, standard deviation, and skewness of the one-period

return as

µ ≡ E [x] , σ ≡
√
E
[
(x− µ)2

]
, s ≡

E
[
(x− µ)3

]
σ3

. (1)

Define the product process XT as

XT = x1 × x2 × ...× xT . (2)

That is, XT represents compound returns over T periods. If the xt-s are assumed to be iid and

have the same distribution as x, then it is straightforward that the k-th order (non-central)

moment of XT is

E
[
Xk
T

]
= E

[
xk1
]
× E

[
xk2
]
× ...× E

[
xkT
]

= E
[
xk
]T

. (3)

The mean and variance of XT can easily be computed using (3) as

E [XT ] = µT and V ar (XT ) =
(
µ2 + σ2

)T − µ2T . (4)

Proposition 1 Let x and xt, t = 1, ..., T, be iid random variables. Define the compound

process XT =
∏T

t=1 xt. Denoting

θj ≡
E [xj]

E [x]j
, (5)

true, our results here suggest that it is not enough to simply include additional terms in the expansion when
dealing with long-run returns.
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the k-th order standardized moment of the compound process, for k > 2, is given by

E
[
(XT − E [XT ])k

]
V ar (XT )k/2

=

∑k
j=0

(
k
j

)
(−1)jθTk−j(

θT2 − 1
)k/2 . (6)

Proof. See the proof in Appendix A.1.

With the help of Proposition 1, all the higher-order standardized moments of XT can be

obtained. Consequently, the skewness and kurtosis of compound returns are

Skew (XT ) =
θT3 − 3θT2 + 2(
θT2 − 1

)3/2 and Kurt (XT ) =
θT4 − 4θT3 + 6θT2 − 3(

θT2 − 1
)2 , (7)

where

θ2 =
σ2

µ2
+ 1 , θ3 = s

σ3

µ3
+ 3

σ2

µ2
+ 1 , θ4 = Kurt(x)

σ4

µ4
+ 4s

σ3

µ3
+ 6

σ2

µ2
+ 1 . (8)

The formulas in equations (6) and (7) are fairly straightforward to derive. However, they

imply extreme higher order moments for long-horizon returns, which, to our knowledge, has

not been discussed in previous literature.5

In order to assess the quantitative implications of the above formulas, representative

values for the single-period return moments have to be picked. We use µ = 1.01, i.e., a

1% expected monthly return throughout the paper. Changing the value of µ to 1.008 or

1.012 (i.e., to a 0.8% or 1.2% monthly expected return) only marginally changes the results.

We use σ = 0.05 and σ = 0.08 (i.e., 5% and 8% monthly volatilities) to represent well-

diversified portfolios, and σ = 0.17 (i.e., 17% monthly volatility) to represent individual

stocks.6 σ = 0.11 (11% monthly volatility) represents an intermediate case between fully

diversified market portfolios and individual stocks. The value of the single-period skewness

5Arditti and Levy (1975) derive a related result on the third moment of compound returns, although
they consider the non-standardized moment rather than the actual skewness. Proposition 1 generalizes
their result to all higher order (standardized) moments. Arditti and Levy (1975) note that compounding
induces skewness, but their focus is on portfolio choice and they do not examine the long-run implications
of compounding as they do not consider periods longer than 20 months.

6Ghysels et al. (2016) present summary statistics of the market returns for various countries using data
between 1996 and 2013. The mean monthly return is 0.8% in the U.S. and on a value-weighted developed
markets portfolio, while it is 1.1% on a value-weighted emerging markets portfolio. Bessembinder (2018)
reports a mean of 1.1% for the pooled sample of monthly returns on U.S. common stocks from 1926 to
2016, while Oh and Wachter (2019) report 1.3% for the 1945-2016 subsample. Ghysels et al. (2016) report
the volatility of the monthly returns to be 5.7% in the U.S., 6.2% on the developed market portfolio, and
9.0% on the emerging market portfolio. Finally, Bessembinder (2018) reports a monthly 18.1% volatility for
his pooled sample of individual U.S. stocks, while Oh and Wachter (2019) report 16.8% for the 1945-2016
subsample.
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is varied between s = −2 and s = 2 to illustrate its effect on skewness in long-run returns.

Table 1 shows the skewness of XT , calculated via equation (7), when the single-period

returns correspond to monthly returns with µ = 1.01 and volatility that varies across the

columns of the table. The return horizon, T , varies between 1 month and 30 years. Panel

A shows the skewness of compound returns, when the single-period returns are symmetric

(zero-skew). Several results are worth noting. First, compound returns are positively skewed,

and their skewness increases non-linearly with the horizon. That is, compounding induces

skewness in long-horizon returns even if single-period returns are symmetric (as previously

also noted by Arditti and Levy, 1975, and Bessembinder, 2018). Second, skewness increases

dramatically and highly non-linearly in σ, for a given T . In other words, the single-period

volatility has a huge effect on the degree of skewness induced by compounding. If the

volatility of the monthly returns is σ = 0.05, which corresponds to a well-diversified portfolio,

the effect of compounding is clear, although not extreme: The skewness of the 30-year returns

is 5.19. On the other hand, for σ ≥ 0.11 the skewness induced by compounding increases

very rapidly with the horizon. This leads to our third observation: For large T and σ, the

skewness values are extreme. For example, the skewness of 30-year returns when σ ≥ 0.17 is

in the order of millions. Finally, it is worth highlighting that the results in Panel A hold for

any symmetric distribution. They are equally valid if one-period returns are, for example,

normally or uniformly distributed.

The rest of Table 1 helps us understand the effect of single-period skewness. Panel B

corresponds to the case where monthly returns have a skewness equal to that of a log-normal

distribution.7 Panels C and D represent cases with more greatly skewed one-period returns,

with s = Skew(x) being 2 and -2, respectively. Our main observation is that the effect of

single-period skewness depends on the level of the single-period volatility. When σ is low,

single-period skewness does not have a large effect on the skewness of long-horizon returns

(up to a 30-year horizon). Take the column with σ = 0.05; the skewness of the 30-year

returns is 4.50 when s = −2, and it is 5.95 for s = 2. That is, the difference in skewness

at the 30-year horizon is much lower than at the monthly level. In fact, it is striking how

quickly the negative skewness is reduced in magnitude through compounding. For σ = 0.05,

the skewness goes from −2 at the monthly horizon to −0.13 at the annual horizon. When

single-period volatility is high, single-period skewness can have a large effect on the skewness

of compound returns, especially at long horizons. For example, if σ = 0.17, the skewness of

30-year returns is of the order of 104 when s = −2, and of the order of 107 for s = 2. However,

large absolute differences between the corresponding cells of different Panels in Table 1 only

7The log-normal distribution does not have an explicit skewness parameter, but its skewness is a function

of the mean and variance of the distribution. Specifically, s = σ
µ

(
σ2

µ2 + 3
)

.
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occur when the values in Panel A (non-skewed single-period returns) are already extreme.

In these cases, it is hard to give an interpretation to the differences in the extreme skewness

levels (i.e., it is difficult to interpret the difference between the skewness levels of 104 and

107).

Figure 1 provides a graphical illustration of the results in Table 1 by plotting the skewness

of compound returns as a function of horizon. Single-period volatility, σ, is varied across the

panels, while differing single-period skewness, s, is represented by different lines. Panel A

clearly illustrates that for low single-period volatility, the skewness in long-horizon compound

returns is almost identical regardless of inherent skewness in the single-period returns. As

the volatility of the single-period returns increases (through Panels B-D), the skewness in

compound returns can easily reach extreme values. However, for a given volatility, the

cases with s = 0 and s = ±2 result in qualitatively similar patterns. To that extent, it

is the volatility of the single-period returns, and not their skewness, which is of first order

importance for the skewness of compound returns. In other words, the patterns in Skew (XT )

are more similar within the panels of Figure 1 (where single-period skewness is varied), than

they are across the panels (where single-period volatility is varied).8

2.2 Theory versus estimation

Bessembinder (2018) reports the skewness of the 90-year compound return on a bootstrapped

U.S. single-stock position to be around 100. At the same time, Table 1 shows that the the-

oretical skewness of the 30-year compound return is already in the order of millions if the

single-period volatility is σ = 0.17 (which is similar to the monthly volatility of the boot-

strapped single-stock position). There is a large discrepancy between the estimation results

and theory. As we show in this section, the discrepancy arises because the common skewness

estimator is not adequate for measuring the skewness of long-horizon returns, especially in

the case of individual stocks.

The commonly used estimator of skewness is

Ŝ ≡
1
n

∑n
i=1 (zi − z̄)3(

1
n

∑n
i=1 (zi − z̄)2

) 3
2

, (9)

where zi, i = 1, ..., n is a sample (of size n) corresponding to a general random variable

8Bessembinder et al. (2019) provide empirical support to these theoretical predictions. They show in a
cross-country analysis that the standard deviation of monthly individual stock returns is negatively associated
with the proportion of stocks that outperform the risk-free investment in the long run (which can be viewed
as a measure of asymmetry), while the skewness of monthly individual stock returns does not have significant
explanatory power.
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Z, and z̄ is the sample average. For non-normal distributions, Ŝ is typically biased, but

theoretical expressions for the bias are generally not available (Joanes and Gill, 1998). Since

long-horizon returns can be highly non-normal, evidenced by the high positive skewness

shown in Figure 1, assessing the size of the bias becomes a relevant issue.

We start with a Monte Carlo simulation to show the finite sample distribution of the

estimator, but later we also derive its asymptotic distribution. For the simulation, we as-

sume that single-period returns are log-normal. For a given sample size n, we simulate n

independent realizations of the long-run compound return XT and estimate the skewness of

the sample using the estimator Ŝ. We repeat this step 100,000 times to get the distribution

of the skewness estimates. Figure 2 summarizes these distributions for different monthly

volatilities (σ) and compounding horizons (T ), with the sample size n ranging from 50 to

250,000; the expected monthly return is always equal to 1% (µ = 1.01). Specifically, each

panel in the figure shows the range between the 5th and the 95th percentiles, the median

(square marker), and the mean value (diamond marker) of the skewness estimates Ŝ. The

true skewness value, that Ŝ tries to estimate, is indicated by the dotted vertical line in each

graph.

The graphs in the top row of Figure 2 use 8% for the single-period volatility, representing

well-diversified portfolios and market indexes (the results are qualitatively similar if 5%

single-period volatility is used). Panel A presents results for annual returns (T = 12). If

one considers a portfolio or a market index, one might have somewhere between 50 and 100

years of time-series data, and therefore the sample sizes of n = 50 and n = 100 correspond

to directly estimating the skewness from annual returns. As seen from Panel A of Figure 2,

there is a clear downward bias in Ŝ when n = 50. For n = 100, Ŝ is closer to being unbiased,

but the precision of the estimator is still not great. The precision improves quickly as n

increases, but the larger sample sizes are only available in simulations. Moving to Panel B

for 5-year returns (T = 60), n = 50 is already empirically out of reach for direct estimation

of skewness, and Ŝ is a biased estimator for n ≤ 100. However, unbiasedness and a high

precision can be achieved in simulation settings.

The 20-year horizon reveals the real limitations of the skewness estimator. Wilkins (1944)

shows that there is an upper limit to the absolute value of Ŝ, which depends solely on the

sample size: ∣∣∣Ŝ∣∣∣ ≤ n− 2√
n− 1

≈
√
n . (10)

This is an exact bound that holds in any sample: It is numerically impossible for the skewness

estimator Ŝ to exceed
√
n. The upper bound is indicated by the cross marker in the graphs

of Figure 2. At n = 50 and n = 100 in Panel C, the upper limit is lower than the true value
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of skewness (which equals 12 in Panel C), implying that all the sample estimates will be

lower than the true parameter value. As the sample size increases, the upper bound from

equation (10) is not binding anymore, but Ŝ remains downward biased even at n = 25, 000.

At n = 250, 000, Ŝ is close to being unbiased, but its distribution is right-skewed and has

a wide dispersion around the true skewness value. Therefore, an even higher sample size

(e.g., n ≥ 106) is needed to get a precise estimate of the skewness for 20-year returns in this

example. Obviously, these issues become even worse as the horizon further increases.

The graphs in the bottom row of Figure 2 use a monthly volatility of 17% to represent the

case of individual stocks. Start again with looking at annual returns (T = 12). In a purely

empirical situation, using a single cross-section of annual returns on individual stocks, one

might face a sample size around n = 2, 500. As is seen in Panel D of Figure 2, the skewness

estimator is almost unbiased and reasonably precise in this case. For longer horizons, much

larger sample sizes are needed. In the case of 5-year returns, the skewness estimator is

severely downward biased for n = 2, 500, and it becomes unbiased only for n > 250, 000. If

one pools individual stock returns from many years, considerably larger sample sizes than

n = 2, 500 can be achieved. In the CRSP data set for U.S. stock returns, using observations

from the entire 1926 to 2019 period, one can construct close to 300, 000 independent annual

stock returns and 50, 000 independent 5-year returns. However, even if one ignores the issue

that a sample spanning so many stocks and such a great time period is likely to suffer

from large heterogeneity, and thus a less clear interpretation of the estimates, the available

sample size at the 5-year horizon is still not enough to ensure a reliable skewness estimate.

The required sample sizes are only available in simulation settings.

Estimating the skewness of 20-year (and longer) returns on individual stocks proves to

be essentially impossible. The true skewness of the 20-year returns in Panel F of Figure 2

is 23,366. The upper bound on Ŝ is therefore highly restricting for all the presented sample

sizes, even for n = 250, 000 (where the upper bound is 500). The skewness estimates are

highly misleading because of an extreme downward bias in the estimator. Equation (10)

implies that a sample size above 5.5 × 108 would be needed just for the upper limit on Ŝ

not to be binding in this case. However, simply exceeding the required minimum sample

size from equation (10) is not enough, as suggested by Panel C of Figure 2, and a sample

considerably larger than n = 5.5× 108 is needed to obtain useful estimates.

The above results imply that extremely large sample sizes are needed to avoid a biased

estimator when estimating the skewness of long-horizon individual stock returns. However,

even if the sample is big enough to avoid a substantial bias, the standard error of the

estimator can still be so large that the skewness estimates are next to useless. To assess this

concern, we derive the asymptotic distribution of the skewness estimator.

11



Proposition 2 The asymptotic distribution of the skewness estimator Ŝ, as n → ∞, is

given by

√
n
(
Ŝ − Skew(Z)

)
d→ N

(
0,
µ6 − 6µ2µ4 + 9µ3

2 − µ2
3

µ3
2

− 3µ3 (µ5 − 4µ2µ3)

µ4
2

+
9µ2

3 (µ4 − µ2
2)

4µ5
2

)
,

(11)

where µk ≡ E
[
(Z − E [Z])k

]
.

Proof. See the proof in Appendix A.2.

That is, Ŝ is consistent and asymptotically normally distributed, with an asymptotic variance

that is a function of the central moments up to order six. In the case of compound returns,

the µk values for k ≥ 3 can be obtained from the single-period moments via Proposition 1.

Using the asymptotic variance from equation (11), Figure 3 shows two-standard error bounds

of the skewness estimator around the true parameter value. The monthly returns are log-

normally distributed with a 17% volatility (representing individual stocks), and the horizon

over which the returns are compounded changes along the horizontal axis.9 The bounds are

shown for two different sample sizes, n = 1015 and n = 1020, both large enough that the

upper bound on Ŝ is not binding even for the 30-year (T = 360) returns. As is evident

from Figure 3, the error bounds on the skewness estimator widen very quickly after a certain

horizon, such that the estimates essentially become uninformative due to the large standard

errors. Even with a simulated sample size of n = 1020 observations, skewness estimates are

uninformative for return horizons over 15 years.

To summarize, direct empirical estimation of skewness is essentially limited to annual

or shorter horizons, both for market indexes (where time-series data are available), and for

individual stocks (where cross-sectional data are also available); if one pushes the available

data to the limit and pool individual stock returns over very long time periods (i.e., the last

100 years), estimation at somewhat longer horizons (e.g., 2 or 3 years) might sometimes be

possible, but the 5-year horizon is already infeasible. For longer horizons, we have to rely

on simulations to achieve adequately-sized samples. However, even simulations have to be

carried out with caution when studying the skewness of long-horizon returns. For aggregate

returns (σ ≤ 0.08), simulated sample sizes in the order of millions might be needed, which

is larger than what is used in typical simulation studies. For individual stocks (σ ≥ 0.17),

it is essentially impossible to obtain useful simulation evidence at horizons greater than 15

9Log-normal single-period returns are used for the values in Figure 3, but the asymptotic result can be
applied to any distribution where the first six central moments are known. The conclusions are qualitatively
the same if we use the normal distribution or a more skewed distribution for the single-period returns. The
single-period expected return is µ = 1.01.

12



years. In these cases, one can only rely on theoretical results.10

2.3 Relaxing the iid assumption

The result in Proposition 1 was derived under an iid assumption for returns. Relaxing

the “identical” part is relatively straightforward. The factoring of the moments according

to the first equality in equation (3) continues to hold, but the last equality is no longer

valid since the moments for the individual returns change over time. That is, E
[
Xk
T

]
=

E
[
xk1
]
× ...×E

[
xkT
]
6= E

[
xk1
]T

. Simple formulas such as those expressed in equation (7) are

therefore no longer attainable, but for a given set of time-varying moments, the skewness or

kurtosis of the compound returns can relatively easily be calculated. Clearly, the moments

of the compound returns will reflect a form of average moments for the period returns, and

the insights from unconditional heteroskedasticy are limited.

Of more interest is therefore the relaxation of the “independence” assumption, while

maintaining that the unconditional distribution remains the same over time. Allowing for

some form of dependence across the individual returns immediately implies that E
[
Xk
T

]
6=

E
[
xk1
]
× ...× E

[
xkT
]

for at least some k, and one needs to take into consideration the joint

distribution of x1, ..., xT . Such a setting quickly becomes non-tractable, given the difficulties

of analyzing products of dependent random variables. Below, we first discuss the case where

period returns are serially correlated, where a (heuristic) analytical result is presented. We

then discuss the effects of other types of dependence.

2.3.1 Serial correlation

Since compounding involves multiplication rather than summation, the exact effects of serial

dependence on the compound returns is extremely difficult to derive. Therefore, we rely

on a heuristic approximation based on the log-normal case. Using the skewness result in

equation (7) under the assumption that period returns are iid log-normal implies

Skew (XT ) =

((
1 +

σ2

µ2

)T
+ 2

)((
1 +

σ2

µ2

)T
− 1

) 1
2

. (12)

10The limits of what can be achieved with simulations clearly depend on computing power. As seen from
Figure 3, one would need simulated sample sizes exceeding 1020 to achieve reliable results for individual
stocks at the 15-year horizon. In the simulation results reported below in Table 2, we use a sample size of
107. While such a sample size is many times larger than those typically used in simulation studies, it still
restricts us to consider horizons of 10 years or shorter for σ = 0.08, and to horizons of 2 years or shorter for
σ = 0.17; see Foonote 14 for additional details.
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Our result for serially correlated returns is stated as a corresponding (approximate) expres-

sion of the (exact) iid result in equation (12):

Proposition 3 Suppose x and xt, t = 1, ..., T are log-normally distributed random variables

with mean µ and variance σ2, and let XT =
∏T

t=1 xt be the corresponding compound returns.

Further, let the variance ratio V R denote the ratio between the long-run and short-run vari-

ance of xt, such that

V R ≡ LR.V ar (x)

V ar (x)
=

∑∞
j=−∞Cov (xt, xt+j)

V ar (xt)
. (13)

The skewness of XT in the case when the xt-s are serially correlated can be approximated as

Skew (XT ) ≈

((
1 +

V R× σ2

µ2

)T
+ 2

)((
1 +

V R× σ2

µ2

)T
− 1

) 1
2

. (14)

Proof. See the proof in Appendix A.3.

As is evident from equation (14), the effect of serial correlation is captured by scaling the

variance of the single-period returns with the long-run to short-run variance ratio. Specifi-

cally, Proposition 3 implies that if single-period returns have mean µ, volatility σ, and are

serially correlated, the skewness of the resulting compound returns behaves as if the single-

period returns were iid with mean µ and volatility
√
V R × σ.11 There is a large literature

suggesting that returns are mean-reverting over longer horizons, which implies that V R < 1

(see, for instance, Fama and French, 1988, Poterba and Summers, 1988, Cecchetti et al.,

1990, Cutler et al., 1991, Siegel, 2008, and Spierdijk et al., 2012).12 Thus, for example, if the

non-iid single period returns have σ = 0.17 and V R = 0.8, the resulting Skew (Xt) can be

well approximated by the iid formula with volatility parameter equal to
√

0.8×0.17 ≈ 0.152.

Figure 4 illustrates the effects of serial dependence on the skewness of compound returns.

The effects of V R = 0.9 and V R = 0.8 are compared to the benchmark iid case within

each panel, and the volatility of the single-period returns is varied across the panels. The

conclusions are similar to those obtained when looking at the effect of single-period skewness.

When σ is low, the effect of serial dependence on long-horizon skewness is small. When σ is

11Alternatively, one can think of this as replacing the standard (short-run) variance, σ2, with the long-
run variance, V R × σ2, in the skewness expression in equation (12). That is, under serial correlation, the
appropriate measure of the variance in the process is the long-run variance, and it is this quantity that
should be used when inferring the skewness in long-run compound returns.

12The presence of mean reversion in stock returns is not universally accepted, however, and other studies
argue against it; for instance, Richardson and Stock (1989), Kim, Nelson, and Startz (1991), and Richardson
(1993).
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high, the effect of serial dependence can be sizable, but only in the range of extreme skewness

levels, where interpretation of the different skewness values is not straightforward any more.

To that extent, the effect of serial dependence is of second order importance compared to

the effect of single-period return volatility.

2.3.2 Non-linear dependencies

The other common model deviation from independent returns is some form of conditional

heteroskedasticity, where the first moment of returns are serially uncorrelated, but where

there is higher-order (non-linear) dependence. GARCH and stochastic volatility processes,

including those with so-called “leverage” effects, are typical examples of such models. Given

their non-linear nature, such processes immediately become very difficult to analyze in a

multiplicative compounding framework. In this section we present simulation results for such

processes, and show that there are quantitative effects of introducing stochastic volatility.

But qualitatively, long-run compound returns behave very similarly to the iid case.

Neuberger and Payne (2021) stress the importance of the “leverage” effect on the skewness

of long-run returns. The leverage effect refers to the often observed negative correlation

between past returns and current volatility. The extent of this effect varies across assets and

appears stronger in index returns than in individual stock returns (e.g. Kim and Kon, 1994,

and Andersen et al., 2001).

We consider a simulation experiment where data are generated by a continuous-time

stochastic volatility (SV) model. Specifically, we use the Heston (1993) model of stochas-

tic volatility, which is the same as the one used by Neuberger and Payne (2021) in their

simulations.13 As discussed at length in Section 2.2, simulation results can be misleading

at long horizons and for large volatilities. Therefore, we restrict the results to the “safer”

regions of the parameter space, i.e., to shorter horizons for higher monthly (unconditional)

volatilities.14

13Jumps in returns are a common feature in continuous-time models and jumps that have a negative mean
contribute to negative skewness in returns. However, since jumps are typically assumed independent they
have little effect on long-run compound returns. In non-reported simulations, we find that at the five-year
horizon the specifications with and without jumps deliver almost identical results. We therefore focus the
analysis on specifications without jumps.

14Specifically, we first rule out all cases where the upper bound on the skewness estimator in equation
(10) is (close to) binding. Second, we rule out cases where the asymptotic standard errors (under an iid
log-normal assumption) would be “large”. There is always a return horizon after which there is a substantial
discrete jump in the standard error, and after which the skewness estimator thus becomes very imprecise; in
all cases we report, the asymptotic standard errors are less than 0.15. And third, we compare the differences
between the theoretical skewness values and the estimated skewness values from simulated data in the iid
log-normal case. In this case, the theoretical skewness values are known (and we report these in Table 2),
but as a final check we verify that the estimated values are close to the theoretical ones. For the reported
return horizons in Table 2, this difference never exceeds 0.15 in absolute value.
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The details of the simulation design are described in Appendix B. In brief, our parametriza-

tion are similar to those usually found in the literature, with the exception that we set the

average volatility equal to 5%, 8%, 11%, or 17% on a monthly frequency, and the expected

monthly return to 1%, so that the results are comparable to those in previous sections.

The volatility of volatility, as well as the mean reversion parameter for the SV process are

specified in the Appendix and are close to the typical values reported empirically. We con-

sider three different values for the correlation between the return and volatility innovations:

0,−0.5, and −0.75. We refer to these as the no-leverage (SV-NL), standard-leverage (SV),

and high-leverage (SV-HL) cases, respectively. A value around −0.5 (SV) is often seen for

U.S. stock index data (e.g., Andersen et al., 2002,. Eraker et al., 2003, Eraker, 2004), and

is likely the empirically most relevant value for the low-volatility specifications that aim to

capture the behavior of index returns. The high-leverage specification (SV-HL) is counter-

factual to most empirical evidence and is intended to show the limits of the effects of leverage

in our analysis. The no-leverage case (SV-NL) serves two purposes. First, the leverage ef-

fect is quite limited in individual stock returns (e.g., Andersen et al., 2001), so this is the

empirically most relevant value for the high-volatility specifications. Second, by cutting off

the dependence between the return and volatility innovations, one can examine the impact

of time-varying volatility alone, without a leverage effect. The simulation results are based

on 107 simulated returns for any given horizon.

The first four columns of Table 2 show estimates of the skewness in the simulated data,

along with theoretical values for the iid log-normal case (labeled LN ), which can be viewed

as a special case of the SV model with constant volatility. The volatility σ now represents the

average volatility in the SV specifications. Starting with the results for σ = 0.05, it is clear

that stochastic volatility with leverage induces negative skewness at shorter horizons. At the

monthly horizon (T = 1) the iid log-normal returns have a positive skewness of 0.15, whereas

the SV returns with standard leverage have a skewness of −0.30. In the high-leverage case,

the skewness increases in absolute value to −0.57. When the leverage effect is turned off

(SV-NL), there is no negative skewness effect from time-varying volatility.

At the annual horizon (T = 12), there is still some negative skewness left in the specifi-

cations with leverage, but it has decreased in magnitude relative to the monthly horizon. At

horizons longer than two years, the skewness is positive in all cases. As the average volatil-

ity is increased, the positive-skewness effect from compounding starts to dominate quicker:

For σ = 0.08, all specifications have positive skewness already at the annual horizon. For

σ = 0.11 and 0.17, we only report skewness estimates for shorter horizons, given the dis-

cussion in Section 2.2 on the bias and variance in the skewness estimator. However, even

at shorter horizons, it is clear that the positive skewness from compounding dominates the
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negative skewness induced by the leverage effect.

The results in Table 2 strongly suggest that stochastic volatility and leverage effects

do not overturn the main conclusions drawn from the iid analysis presented in Section 2.

Time-varying volatility has very little impact if the leverage channel is turned off. Time-

varying volatility coupled with leverage does have a negative effect on skewness. At short

horizons, and for low levels of (average) volatility, this results in an actual negative skewness

for compound returns. However, at horizons longer than 2 years, the positive skewness

induced by compounding seems to inevitably dominate the negative skewness from leverage.

Thus, while stochastic volatility with leverage can reduce the skewness in long-run compound

returns, compounding still has a very similar effect to that in the iid case.

3 Other measures of asymmetry

The moment-based Skew(XT ) is not the only measure that has been used in the literature

to describe the asymmetry of return distributions. Kim and White (2004) and Ghysels et

al. (2016) advocate the use of quantile-based measures of asymmetry because they are more

robust to the presence of outliers. Hinkley’s (1975) quantile-based coefficient of asymmetry

is defined, for any α ∈ (0.5, 1), as

QSkewα (XT ) ≡ Qα (XT ) +Q1−α (XT )− 2Q0.5 (XT )

Qα (XT )−Q1−α (XT )
, (15)

where Qα, Q0.5, and Q1−α denote the α quantile, median, and 1 − α quantile of the return

distribution, respectively. For any symmetric distribution, QSkewα (XT ) = 0, and the mea-

sure is bounded with the maximum value of 1 representing extreme right asymmetry (or,

right-tailed distribution) and the minimum value of -1 indicating extreme left asymmetry.

Bowley’s (1920) measure of asymmetry is obtained as a special case with α = 0.75 (i.e.,

using quartiles). QSkewα depends on the value of α, and it is not clear what value should be

used. Therefore, Groeneveld and Meeden (1984) constructed an alternative by integrating

over 0.5 < α < 1:

QSkew (XT ) ≡
∫ 1

0.5
{Qα (XT ) +Q1−α (XT )− 2Q0.5 (XT )} dα∫ 1

0.5
{Qα (XT )−Q1−α (XT )} dα

. (16)

This measure is also zero for any symmetric distribution and is bounded by -1 and 1.

Other studies (e.g., Campbell and Hentschel, 1992; and Neuberger, 2012) are concerned

with the skewness of log returns, Skew(log(XT )), which we will subsequently refer to as

logSkew, for short. As we will highlight in this section, it is crucial to clearly distinguish
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between Skew(XT ) and Skew(log(XT )) when discussing the “skewness of returns,” especially

for long horizons. More recently, Neuberger and Payne (2021) have also proposed a new

measure of return asymmetry, which is closely related to the skewness of log returns:

NPSkew (XT ) ≡
E
[
6
((
eX̃T + 1

)
X̃T − 2

(
eX̃T − 1

))]
E
[
2
(
eX̃T − 1− X̃T

)]3/2 , (17)

with X̃T ≡ log(XT )−m̃T , where m̃ is an appropriately defined constant (see the definition in

Appendix C). NPSkew is constructed such that it equals zero for the log-normal distribution

(Neuberger and Payne, 2021).

In this section, we study the asymmetry of the distribution of long-horizon returns using

QSkew, logSkew, and NPSkew.15 In order to analytically calculate these measures, we have

to specify the return distribution. Similar to previous results in the paper, our benchmark is

the case of log-normally distributed single-period (monthly) returns. Appendix C.1 provides

analytical formulas for all the asymmetry measures discussed above, in the case when single-

period returns are iid log-normal. However, we also require a more flexible distribution to

study how more asymmetric single-period returns affect the shape of the long-horizon return

distribution.

The Normal Inverse Gaussian (NIG) distribution, introduced by Barndorff-Nielsen (1997),

is a four-parameter distribution allowing for non-zero skewness and fat tails. In our alter-

native parametrization, we assume that the single-period returns, xt, have a log-NIG distri-

bution (i.e., that log(xt) follow a NIG distribution) and are iid across time. The log-NIG

distribution has several useful features:

• the log-normal distribution is nested as a special case,

• the parameters of the distribution can be set to match a certain combination of the

first four moments (mean, variance, skewness, and kurtosis),

• if the single-period returns are iid log-NIG, the corresponding compound returns are

also log-NIG, and

• we are able to derive analytical formulas for all the measures of asymmetry discussed

above.

15Unreported results show that looking at QSkewα, with different α levels, leads to similar conclusions to
those obtained from the integrated QSkew measure. In order to save space, we therefore omit the results
using QSkewα.
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We provide the formulas and the details of the above statements in Appendix C.2.

Figure 5 shows QSkew, logSkew, and NPSkew as a function of horizon, when single-

period returns are iid log-NIG. Three levels of monthly volatility (5%, 8%, and 17% across

the panels) and three monthly skewness levels (-2, 2, and the skewness implied by log-

normality, within each graph) are used; note that these skewness levels refer to the skewness

of the simple (non-log) returns.16 Let us start with the quantile-based measure shown in

the panels in the first column. First, QSkew increases with the horizon in all cases. As a

consequence, long-run returns display positive asymmetry: For horizons longer than 2 years,

all QSkew values are positive, even if the monthly returns are negatively skewed. Second,

single-period volatility has a much larger effect than single-period skewness on QSkew in

the long-run, i.e., QSkew values for long-horizons vary much more across the graphs than

within them. Third, long-run individual stock returns display extreme asymmetry: the value

of QSkew gets very close to its upper bound of one in Panel G for horizons longer than 5

years. All in all, studying QSkew leads to the exact same qualitative conclusions as the

standard measure of skewness, without providing much additional insight.

Let us now turn to logSkew and NPSkew. As is clear from Figure 5, the two measures

give almost identical values. Neuberger and Payne (2021) also point out, based on their

empirical and simulation results, that NPSkew generally lies rather close to logSkew. Our

analytical results confirm this within the iid log-NIG setup. Both measures take the value

of zero for the log-normal distribution and, heuristically, the signs of logSkew and NPSkew

therefore provide an interpretation relative to log-normality ; negative values indicate that

the distribution features less right asymmetry than the log-normal distribution.17 However,

because the reference point – the skewness of compound (non-log) returns – is changing with

the return horizon, it is hard to properly interpret specific values of these measures. If we

consider the case where the single-period returns are negatively skewed with Skew(x) = −2,

both the Skew(XT ) values from Figure 1 and the QSkew values from Figure 5 show that for

horizons longer than 2 years, the compound return distribution features right asymmetry

(i.e., a longer right tail), despite the logSkew and NPSkew values being negative for all return

16To pin down all the parameters of the log-NIG distribution, the kurtosis of the simple returns also needs
to be specified. When skewness is implied by log-normality, the corresponding kurtosis of the matched log-
normal distribution is used. In the case with the skewness set to -2 or 2, the kurtosis is set to 15. While the
log-NIG distribution allows us to match the first four moments, not all moment combinations are feasible and
some combinations will result in fairly extreme parameter combinations. We pick a kurtosis of 15 because it
leads to reasonable parameters values for all different levels of volatility considered. The results for horizons
longer than two years in Figure 5 are barely affected by the choice of kurtosis.

17This is an heuristic interpretation. There may exist distributions with skewness less (greater) than the
log-normal, but for which logSkew is positive (negative). However, in terms of trying to relate skewness of
simple returns to skewness of log returns, benchmarking the latter against the log-normal distribution is
likely a reasonable guide in most cases.
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horizons. Finally, Figure 5 also shows that both logSkew and NPSkew converge to zero as

the return-horizon increases, which is expected from central limit convergence.

The results in Figure 5 correspond to iid returns. Neuberger and Payne (2021) empha-

size the importance of the effect of time-varying volatility with leverage on the skewness

of long-run returns. Therefore, in Table 2 we also present simulation based estimates of

the asymmetry measures corresponding to the stochastic volatility specifications detailed in

Section 2.3.2. Our earlier conclusions are reinforced. QSkew values show that stochastic

volatility with leverage leads to somewhat less asymmetry in long-horizon returns compared

to the iid case, but the differences are small, and long-run compound returns are positively

skewed.

The logSkew and NPSkew values in Table 2 are very close to each other, and both

measures are negative for the stochastic volatility with leverage specifications; i.e, they lead

to less pronounced right asymmetry than a comparable iid log-normal specification. However,

it needs to be emphasized again that negative logSkew and NPSkew values do not imply

negatively skewed simple (non-log) compound returns. For example, 5-year returns from the

SV specification with σ = 0.05 feature Skew(log(XT )) = −0.4 and NPSkew(XT ) = −0.35,

but the distribution of these returns clearly features right asymmetry (positive skewness) as

shown by the corresponding Skew and QSkew values (and by the actual density shown in

Section 4 below). Again, the relevant interpretation of logSkew and NPSkew is relative to

the skewness of log-normal returns, which are highly positively skewed for long horizons.

4 The density of long-run returns

We have looked at various measures of asymmetry in the previous sections, and concluded

that long-horizon returns are positively skewed. In this section, we illustrate what the (often

extreme) skewness numbers imply for the shape of the distribution of long-run compound

returns. We start with our benchmark case, where monthly returns are iid log-normal.

Figure 6 shows the densities of compound returns at different horizons, for different levels

of single-period volatility. The monthly mean is µ = 1.01, and the monthly volatility is

either 5%, 8%, or 17%. Since log-normality is preserved under multiplication, the compound

returns are also log-normal with the parameters scaled by the horizon. Figure 6 simply plots

the resulting (analytical) densities for the the log-normal compound returns. The mean of

the compound returns, which is identical across the three specifications in each panel, is

indicated with a solid vertical line.

At the annual horizon (T = 12), the distribution associated with the lowest monthly

volatility (σ = 0.05) appears fairly symmetric (skewness equal to 0.48), whereas for the
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more volatile cases clear signs of asymmetry are already noticeable. This is especially true

for σ = 0.17, which is very far from symmetric (skewness equal to 1.86). As the compounding

horizon increases, all three distributions become more positively skewed. This is most clearly

evident for σ = 0.17, but also the less volatile cases result in high degrees of asymmetry as

T grows large. For T = 120 and T = 360, the densities for σ = 0.17 become extremely

peaked at small outcomes and the graphs are truncated along the y-axis to maintain useful

information for the other two densities.

Figure 6 provides a graphical interpretation of the skewness numbers discussed in the

previous sections. As is seen, even relatively small deviations from zero skewness result in

markedly non-symmetric distributions (e.g., for σ = 0.08 and T = 120, the skewness is 4.24).

Thus, Figure 6 clearly illustrates that there is a strong skew-inducing effect of compounding

also for low-volatility assets. We previously highlighted the extreme skewness in long-run

individual stock returns, or other volatile assets. In comparison, well diversified portfolios

with low volatility appear reasonably well-behaved (compare the skewnesses for σ = 0.05

and σ = 0.17 in Table 1). However, this is a relative statement, and in absolute terms the

long-run market returns are also very skewed and far from symmetric, as is evident from

Figure 6. A portfolio with a monthly volatility of 5%, has a skewness of about 5 in the

30-year compound returns. A monthly volatility of 8% results in a skewness over 30 at the

30-year horizon. As seen in Panel D of Figure 6, the distributions corresponding to these

skewness numbers are highly asymmetric.

To further emphasize how compounding induces asymmetry, it is useful to calculate how

much mass in the distribution that is to the right of the mean outcome; i.e., the probability

of a given outcome exceeding the expected value. Table 3 shows the mean, median, and the

probability of the returns exceeding the mean for different combinations of σ and T , still

assuming log-normally distributed returns. For T = 360, the expected compound return is

equal to µ360 = 35.9 when µ = 1.01. If the monthly volatility is equal to σ = 0.05 (0.08),

the median 30-year compound return is equal to 23.1 (11.7). For σ = 0.05 (0.08), there is

only a 32% (23%) chance of the portfolio beating its 30-year expected return. Naturally,

for σ = 0.17, these figures are even more extreme: The median 30-year compound return

is equal to 0.24 (i.e., a net return of −76%) and the probability of beating the mean is less

than 6%.

Figure 6 and Table 3 correspond to the iid log-normal case, but we also assess the effect

of deviations from iid log-normality. Figure 7 shows the density of 5-year returns for two

previously discussed alternatives. First, when single-period returns are iid but not log-

normal. In particular, monthly returns are assumed to have a log-NIG distribution with
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Skew(x) = −1.18 The second deviation is when returns are non-iid and generated by a

stochastic volatility model. In particular, the parameterization with standard leverage is

used, which is labeled as SV in Table 2. The iid log-normal density is also presented as a

benchmark. Note that the log-normal and log-NIG densities are analytical, while the SV

densities are based on simulations. The overall conclusion from Figure 7 is that the different

assumptions on the single-period returns result in quite similar densities for 5-year compound

returns. The densities are not identical, but it is clear that the long-run distributions are

dominated by the compounding effects and not by the short-run properties of the return

generating process. Unreported graphs at the 10 and 30-year compounding horizons illustrate

how the densities become even more similar as the return horizon increases, as one would

expect from central limit convergence.

5 Implications for portfolio choice

We end our analysis with a discussion on implications for portfolio choice. The majority

of the literature studying the effect of return skewness on portfolio choice and asset pricing

relies on a theoretical framework that uses a third- or fourth-order Taylor expansion of some

utility function.19 As we demonstrate below, this approach can be misleading when applied

to longer investment horizons.

The investor’s end of horizon wealth is

WT = W0XT , (18)

where W0 denotes the initial wealth. Assume that the investor has power utility over terminal

wealth with risk aversion γ > 0, i.e., u (WT ) =
W 1−γ
T

1−γ . Without loss of generality we set

W0 = 1, implying WT = XT . The investor’s utility function can be approximated by a

Taylor expansion around the expected wealth. Using a fourth order expansion, the investor’s

18Ghysels et al. (2016) report the monthly skewness of market returns for 43 countries using data from
1996 to 2013. Except for one country, all reported monthly skewness values are larger than -1, so the
Skew(x) = −1 we use in this illustration can be considered a strong negative skewness in the case of index
returns. Also note that we set the kurtosis of monthly returns to 5, but the densities would be very similar
if the monthly kurtosis was set to a higher value, e.g., 10.

19Studies concerned with portfolio choice include Scott and Horvath (1980), Conine and Tamarkin (1981),
Kane (1982), Jondeau and Rockinger (2006), Guidolin and Timmermann (2008), Martellini and Ziemann
(2010), or Ghysels et al. (2016). For papers considering asset pricing implications, see Rubinstein (1973),
Kraus and Litzenberger (1976), Dittmar (2002), Chabi-Yo (2012), Langlois (2013), and Neuberger and Payne
(2021).
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expected utility becomes

E [u (XT )] ≈E [XT ]1−γ

1− γ
− γ

2

V ar (XT )

E [XT ]γ+1 +
γ (γ + 1)

6

V ar (XT )3/2

E [XT ]γ+2 Skew (XT )

− γ (γ + 1) (γ + 2)

24

V ar (XT )2

E [XT ]γ+3 Kurt (XT ) .

(19)

If the expansion is only up to the third order, the kurtosis-related term is omitted. Moments

of the long-horizon return, XT , can be calculated via Proposition 1, and therefore calculating

the expected utility from equation (19) for various investment horizons is straightforward.

In this section, we demonstrate some implications of using the approximated utility, with the

below examples clearly illustrating the problems that can arise from using the finite order

Taylor expansions.

5.1 Assets with different volatility

Consider an investor who tries to rank two assets (or strategies) based on expected utility.

Label the two assets by A and B, and assume that they have the same single-period expected

return, skewness, and kurtosis, but they have different single-period volatilities with σA <

σB. Both assets have iid returns across time. If the investor is risk-averse, it is clear that the

low-volatility asset should be preferred for any investment horizon (we show this formally at

the end of this section). However, as the following proposition shows, using the third order

expansion of the expected utility leads to a different conclusion.

Proposition 4 Let A and B be two assets with single-period returns xA and xB. The single-

period return moments are µA = µB, σA < σB, and sA = sB. Both assets have iid returns

across time. An investor whose expected utility is described by the third order version of (19)

prefers asset B over the investment horizon T if

θT2B − θT2A
θT3B − θT3A

<
γ + 1

3 (γ + 2)
, (20)

where θ2j and θ3j for the two assets j ∈ {A,B} are defined in (8). Assuming that

sB > max
(
−2µB

σB
,−3µB

σ2
B−σ

2
A

σ3
B−σ

3
A

)
, this also implies that

(i) the investor prefers asset B as T →∞, and

(ii) there exists a horizon T ∗ such that the investor prefers asset B for all T > T ∗.

T ∗ is the value of T that solves (20) as an equality.
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Proof. See the proof in Appendix A.4.

As the horizon increases, the investor starts to prefer the high-volatility asset at a certain

point.20 Why does this happen? The skewness of the high-volatility asset grows (much)

quicker with the horizon (see Panel A of Table 1), and the skewness-related term in the third-

order expansion therefore becomes so dominant as the horizon increases that the expected

utility from the high-volatility asset outgrows the utility from the low-volatility asset. That

is, the third order approximation leads to the erroneous conclusion that the high-volatility

asset is preferred for long investment horizons.

Panel A of Figure 8 illustrates this by showing the expected utilities, based on the third

order approximation, from the two assets as a function of the investment horizon in a specific

example (µA = µB = 1.01, σA = 0.05, σB = 0.1, sA = sB = 0, and γ = 5). For short

horizons, the investor prefers the low-volatility asset, but for horizons longer than 13 months,

the investor apparently prefers the high-volatility asset. Panel B shows the value of T ∗ as a

function of σB and γ (while the other parameters are unchanged from Panel A). T ∗ is the

threshold horizon at which the investor starts to prefer the high-volatility asset (according

to the third order approximation). This threshold decreases as (i) the investor’s risk aversion

increases or (ii) the volatility difference between the two assets increases. Also note that the

switch in preference occurs at rather short horizons (within a year) if the investor is highly

risk averse, or the volatility difference between the assets is high.

One could argue that a fourth order expansion of the utility should be used instead.

Indeed, the investor prefers the low-volatility asset for any horizon if the fourth order ap-

proximation is used, because the kurtosis of the high-volatility asset increases quicker with

the horizon than that of the low-volatility asset (which is another direct implication of Propo-

sition 1), and this compensates for the effect of skewness in (19). However, as shown in the

next example, there are also cases when the fourth order expansion leads to analogous errors

as those just illustrated for the third order expansion.

5.2 Assets with different skewness

Consider next two assets that have the same single-period expected return, volatility, and

kurtosis, but their single-period return skewness is different with sA > sB. Both assets

have iid returns across time. Intuitively, since the assets are identical apart from the greater

skewness in asset A, the investor ought to prefer A to B, but this is not always the answer

20The condition sB > max
(
−2µB

σB
,−3µB

σ2
B−σ2

A

σ3
B−σ3

A

)
in Proposition 4 rules out extreme negative values for

the common single-period skewness. It is only a technical condition that will be satisfied for any reasonable
parameterizations at the monthly level. For the example presented in Panel A of Figure 8, this condition
implies sB > −20.2, i.e., the common monthly return skewness has to be above -20.
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delivered from the fourth order approximation.

Proposition 5 Let A and B be two assets with single-period returns xA and xB. The single-

period return moments are µA = µB, σA = σB, sA > sB, and Kurt(xA) = Kurt(xB). Both

assets have iid returns across time. An investor whose expected utility is described by the

fourth order expansion in (19) prefers asset B over the investment horizon T if

θT3B − θT3A
θT4B − θT4A

<
γ + 2

4 (γ + 3)
, (21)

where θ3j and θ4j for the two assets j ∈ {A,B} are defined in (8). Assuming that

sB > −
(
Kurt(xB)

3
σB
µB

+ µB
σB

)
, this also implies that

(i) the investor prefers asset B as T →∞, and

(ii) there exists a horizon T ∗∗ such that the investor prefers asset B for all T > T ∗∗.

T ∗∗ is the value of T that solves (21) as an equality.

Proof. See the proof in Appendix A.5.

As the horizon increases, the investor starts to prefer the asset with the lower (e.g., more

negative) skewness at a certain point.21 Using Proposition 1, it can be shown that the

kurtosis of compound returns grows much quicker with the horizon if the single-period return

skewness is higher. For longer horizons, the kurtosis-related term dominates the expression

in (19), and the lower long-horizon kurtosis implies that the approximated expected utility

is higher for the less skewed (or more negatively skewed) asset.

Panel C of Figure 8 illustrates this by showing the expected utilities, based on the fourth

order approximation, from the two assets as a function of horizon in a specific example

(µA = µB = 1.01, σA = σB = 0.08, sA = 0, sB = −1, Kurt(xA) = Kurt(xB) = 5, and

γ = 5). For short horizons, the investor prefers the non-skewed asset, but for horizons

longer than 8 months, the investor seems to prefer the asset with the negative skewness.

Panel D shows the value of T ∗∗ as a function of the common volatility σ and γ (while the

other parameters are unchanged from Panel C). The threshold horizon at which the investor

starts to prefer the negatively skewed asset (according to the fourth order approximation)

decreases as (i) the investor’s risk aversion increases or (ii) the common volatility of the

assets increases.22 Also note that the switch in preference occurs at rather short horizons

21The condition sB > −
(
Kurt(xB)

3
σB

µB
+ µB

σB

)
in Proposition 5 rules out extreme negative values for the

single-period skewness of asset B. It is only a technical condition that will be satisfied for any reasonable
parameterizations at the monthly level. For the example presented in Panel C of Figure 8, this condition
implies sB > −12.8, i.e., the monthly return skewness of asset B has to be above -12.

22Note that the graph in Panel D of Figure 8 does not change considerably if we change the skewness of
asset B (e.g., to sB = −2 or sB = −0.5) or the common kurtosis (e.g., to Kurt(xA) = Kurt(xB) = 10).
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(within a year) if the investor is highly risk averse, or the common volatility of the assets is

high.

5.3 An exact solution

The approach using approximated utility functions can be misleading because moments scale

differently with the horizon. Therefore, omitting higher order moments by truncating the

Taylor series at an arbitrarily chosen term can lead to erroneous conclusions. By “erroneous,”

we mean that an exact solution of the problem would lead to different conclusions. We show

this by considering a setting where the single-period returns from the assets are iid log-

NIG (the case of log-normal period returns is nested). This assumption allows for an exact

analytical formula for the expected utility from holding the assets of the previous examples

at an arbitrary horizon T .

Proposition 6 Let A and B be two assets with single-period returns xA and xB. Both xA

and xB have a log-NIG distribution, and the assets have iid returns across time. If an

investor with power utility prefers asset A over a single period, then the investor also prefers

asset A over any investment horizon T , i.e.,

E [u(xA)] > E [u(xB)] ⇔ E [u(XTA)] > E [u(XTB)] . (22)

Proof. See the proof in Appendix A.6.

The investor will prefer the low-volatility asset for any horizon in the example illustrated in

Panel A of Figure 8, and will prefer the non-skewed asset for any horizon in the example

corresponding to Panel C. That is, the misleading conclusions of Figure 8 are indeed the

result of the Taylor approximations.

6 Conclusion

Multiplicative compounding of simple gross returns almost inevitably induces positive skew-

ness. This effect is primarily a function of the volatility of the single-period returns and is

relatively little affected by the specific single-period distribution. For volatility levels asso-

ciated with market-wide index returns, the skew-inducing effect of compounding is strong,

whereas for individual stock returns it is extreme. Skewness for individual stock returns at

a 30-year horizon can easily be of the order of millions, and most of the mass of the distri-

bution is concentrated to outcomes close to zero, despite a very large mean. These results

provide a theoretical foundation to Bessembinder’s (2018) study on the empirical behavior of
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long-run individual stock returns. Our results also question recent evidence suggesting that

long-run (e.g., 5-year) aggregate returns have negative skewness. At long horizons, simple

returns and log returns are fundamentally different, and while log returns can easily remain

negatively skewed at long horizons, this is almost impossible for compound simple returns.

The skewness-inducing effect (and the effects on other higher-order moments) are impor-

tant to investors. We point to two immediate implications. First, large positive skewness

makes the mean a fairly uninformative statistic of typical return outcomes at long horizons.

With increasing positive skewness, it becomes more and more difficult to beat the mean out-

come as the investment horizon increases. Second, standard third- and fourth-order Taylor

expansions of utility functions, which attempt to account for skewness and kurtosis, can lead

to erroneous conclusions when applied to longer-horizon returns. In fact, these effects can

manifest already at annual horizons.
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A Proofs

A.1 Proof of Proposition 1

Define the compound process XT = x1× ...×xT . Since xt are iid, we have E
[
Xj
T

]
= E [xj]

T
,

which also implies
E
[
Xj
T

]
E [XT ]j

=

(
E [xj]

E [x]j

)T
= θTj . (A1)

Using the binomial expansion of the k-th central moment of XT (for k > 2),

E
[
(XT − E [XT ])k

]
V ar (XT )k/2

=
E
[∑k

j=0

(
k
j

)
(−1)jXk−j

T E [XT ]j
]

V ar (XT )k/2
=

∑k
j=0

(
k
j

)
(−1)jE

[
Xk−j
T

]
E [XT ]j

V ar (XT )k/2

=

∑k
j=0

(
k
j

)
(−1)j

E
[
Xk−j
T

]
E[XT ]

k−j(
V ar(XT )

E[XT ]
2

)k/2 =

∑k
j=0

(
k
j

)
(−1)jθTk−j(

θT2 − 1
)k/2 .

(A2)

To get to the second line above, divide both the numerator and the denominator by E [XT ]k.

We also provide a simple recursive formula to calculate the θk values. It is straightforward

that

θ1 =
E [x]

E [x]
= 1 and θ2 =

E [x2]

E [x]2
= 1 +

(
E [x2]

E [x]2
− 1

)
= 1 +

σ2

µ2
. (A3)

To determine θk for k > 2, start again with the binomial expansion of the k-th central

moment, and then divide both the numerator and denominator by E [x]k:

E
[
(x− E [x])k

]
V ar (x)k/2

=
E
[∑k

j=0

(
k
j

)
(−1)jxk−jE [x]j

]
V ar (x)k/2

=

∑k
j=0

(
k
j

)
(−1)jE

[
xk−j

]
E [x]j

V ar (x)k/2

=

∑k
j=0

(
k
j

)
(−1)j

E[xk−j]
E[x]k−j(

V ar(x)

E[x]2

)k/2 =

∑k
j=0

(
k
j

)
(−1)jθk−j

(θ2 − 1)k/2

=
θk +

(∑k−2
j=1

(
k
j

)
(−1)jθk−j

)
+ (−1)k (1− k)

(θ2 − 1)k/2
.

(A4)

Rearranging equation (A4) yields

θk = (−1)k (k − 1)−

(
k−2∑
j=1

(
k

j

)
(−1)jθk−j

)
+ (θ2 − 1)k/2

E
[
(x− µ)k

]
σk

. (A5)
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A.2 Proof of Proposition 2

Let the k-th central moment of the variable Z be denoted by µk, and its sample analogue

by mk, i.e.,

µk ≡ E
[
(Z − E [Z])k

]
and mk ≡

1

n

n∑
i=1

(zi − z̄)k . (A6)

Then the skewness of Z, and its estimator from equation (9), Ŝ, are defined as

Skew (z) =
µ3

µ
3/2
2

and Ŝ =
m3

m
3/2
2

. (A7)

Provided the third moment of Z exists, m2 and m3 trivially converge to µ2 and µ3, respec-

tively, by a law of large numbers. Further, from Serfling (1980, page 72), as n→∞,

√
n

[
m2 − µ2

m3 − µ3

]
d→ N

([
0

0

]
,

µ4 − µ2
2 µ5 − 4µ2µ3

µ5 − 4µ2µ3 µ6 − µ2
3 − 6µ2µ4 + 9µ3

2

)
. (A8)

By the delta method, and provided the sixth moment of Z exists, Ŝ satisfies the result in

equation (11). The asymptotic normality result in Serfling (1980) is derived for the iid case,

although the result should extend to more general cases as long as sufficient conditions for

a central limit theorem apply.

A.3 Proof of Proposition 3

Let xt be log-normally distributed with parameters ψ and η. That is, the log-returns yt ≡
log (xt) are normally distributed with mean ψ and volatility η. Assume further that yt follows

a linear (infinite moving average) process, such that

yt = ψ + ut, (A9)

and

ut = C (L) εt =
∞∑
j=0

cjεt−j. (A10)

The innovations εt are assumed to be iid standard normal, i.e., εt ∼ N (0, 1) .

The compound return over T periods is given by XT =
∏T

t=1 xt and the log-compound
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returns satisfy,

YT = log (XT ) =
T∑
t=1

yt = ψT +
T∑
t=1

ut. (A11)

Using the BN decomposition (Beveridge and Nelson, 1981), we can write

ut = C (L) εt = C (1) εt + ε̃t−1 − ε̃t, (A12)

where

ε̃t = C̃ (L) εt =
∞∑
j=0

c̃jεt−j and c̃j =
∞∑

s=j+1

cs . (A13)

C (1) =
∑∞

j=0 cj denotes the so-called long-run moving average coefficient. The process YT

can therefore be written as,

YT = ψT + C (1)
T∑
t=1

εt +
T∑
t=1

(ε̃t−1 − ε̃t) = ψT + C (1)
T∑
t=1

εt − ε̃T , (A14)

using the fact that
∑T

t=1 (ε̃t−1 − ε̃t) = ε̃0 − ε̃T and imposing ε̃0 = 0.

The BN decomposition decomposes the process into a drift component (ψT ), a martingale

component
(
C (1)

∑T
t=1 εt

)
, and a transitory component (ε̃T ). For large T , the permanent

(martingale) component has a variation that is of an order of magnitude greater than the

transitory component, and will therefore dominate the stochastic properties of YT . We can

therefore write the “long-run” part of YT as

Y LR
T ≡ ψT + C (1)

T∑
i=t

εt ≈ YT . (A15)

Since εt
iid∼ N (0, 1), it follows that

∑T
t=1 εt ∼ N (0, T ) and Y LR

T ∼ N
(
ψT,C (1)2 T

)
. Thus,

from the definition of the log-normal distribution, eY
LR
T ∼ LN

(
ψT,C (1)2 T

)
. That is, since

log (XT ) = YT ≈ Y LR
T , XT ≈ LN

(
ψT,C (1)2 T

)
. The parameters ψT and C (1)2 T pin down

the distribution, and therefore also the skewness, of the compound returns as discussed

previously.

In order to assess the effects of serial dependence on compound returns vis-à-vis the iid

setting, consider the case where ut is iid. In this case, log (XT ) = Y LR
T ∼ N (ψT, η2T ), where

the equality between log (XT ) and Y LR
T is now exact. Compared to the serially correlated

case, the mean parameter of the distribution of Y LR
T is the same, but the variance is different.

The effect of the serial dependence is therefore summarized by the differences between the

variance of Y LR
T in the serially correlated case, and the variance of Y LR

T in the iid case.
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Note that the (short-run) variance of yt is given by,

η2 = V ar (yt) = V ar (ut) =
∞∑
j=0

c2j , (A16)

and the so-called long-run variance of yt is given by

LR.V ar (yt) ≡
∞∑

j=−∞

Cov (yt, yt+j) = C (1)2 =

(
∞∑
j=0

cj

)2

. (A17)

The variance of Y LR
T in the iid case is thus equal to T × V ar (yt), whereas the variance of

Y LR
T in the serially correlated case is equal to T ×LR.V ar (yt). Define the variance ratio, of

the long-run variance of yt over its short-run variance,

V R ≡ LR.V ar (yt)

V ar (yt)
=

(∑∞
j=0 cj

)2∑∞
j=0 c

2
j

. (A18)

A given serial correlation structure {cj}∞j=0 reduces or increases the long-run variance of yt,

relative to the iid case, by a factor given in the expression above. The impact of serial cor-

relation on skewness in compound returns is therefore evaluated by comparing the skewness

implied for compound returns when using the short-run variance and the skewness implied

when using the long-run variance.

The variances in equation (A18) correspond to log-returns, yt, whereas the inputs into the

skewness formula in Corollary 1 of the main text correspond to variances of simple returns,

xt. Since xt ∼ LN (ψ, η2), the relationship between the parameter η2 and V ar (x) = σ2 is

given by σ2 = µ2
(
eη

2 − 1
)

, where µ = E [x]. Defining σ2
V R ≡ µ2

(
eV Rη

2 − 1
)

and using the

first-order Taylor approximation eV Rη
2 − 1 ≈ V Rη2 (which is a good approximation, since

the typical values of η2 in our context are close to zero), it can be shown that

σ2
V R

σ2
=
eV Rη

2 − 1

eη2 − 1
≈ V Rη2

η2
= V R .

That is, σ2
V R ≈ V Rσ2. As the log-variance shifts by a factor V R, so does the variance

of simple returns, up to a first order approximation. In order to assess the effect of serial

correlation on skewness, one can therefore also equally well calculate the variance ratio of

the simple returns, rather than for the log-returns.
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A.4 Proof of Proposition 4

Let xA and xB be single-period gross returns on assets A and B, respectively, with µA = µB,

σA < σB, and sA = sB. Define XTj =
∏T

t=1 xtj where the xtj-s are iid and have the same

distribution as xj for both assets j ∈ {A,B}. Using the third order version of the utility

expansion (19), asset B is preferred over horizon T , i.e., E[u(XTB)] > E[u(XTA)], if

E [XTB]1−γ

1− γ
− γ

2

V ar (XTB)

E [XTB]γ+1 +
γ (γ + 1)

6

V ar (XTB)3/2

E [XTB]γ+2 Skew (XTB)

>
E [XTA]1−γ

1− γ
− γ

2

V ar (XTA)

E [XTA]γ+1 +
γ (γ + 1)

6

V ar (XTA)3/2

E [XTA]γ+2 Skew (XTA) .

(A19)

Using thatE[XTB] = E[XTA] (since µA = µB) and the formulas for V ar(XTj) and Skew(XTj)

in equations (4) and (7), straightforward algebraic manipulation shows that the inequality

in (A19) is equivalent to
γ + 1

3 (γ + 2)
>
θT2B − θT2A
θT3B − θT3A

, (A20)

where for j ∈ {A,B},

θ2j =
σ2
j

µ2
j

+ 1 and θ3j = sj
σ3
j

µ3
j

+ 3
σ2
j

µ2
j

+ 1 . (A21)

Using the definitions in (A21), the following inequalities can be established:

• θ3B > θ2B and θ3A > θ2A if sB > −2µB
σB

,

• θ2B > θ2A if σB > σA (which is given by assumption), and

• θ3B > θ3A if sB > −3µB
σ2
B−σ

2
A

σ3
B−σ

3
A

.

Given that sB > max
(
−2µB

σB
,−3µB

σ2
B−σ

2
A

σ3
B−σ

3
A

)
, the above inequalities imply

lim
T→∞

θT2B − θT2A
θT3B − θT3A

= lim
T→∞

(
θ2B
θ3B

)T (1−
(
θ2A
θ2B

)T)
(

1−
(
θ3A
θ3B

)T) = 0 . (A22)

Let us define the function gθ(T ) ≡ θT2B−θ
T
2A

θT3B−θ
T
3A

. It is easy to show that gθ(2) < gθ(1), as

θ22B − θ22A
θ23B − θ23A

=
(θ2B − θ2A) (θ2B + θ2A)

(θ3B − θ3A) (θ3B + θ3A)
<

(θ2B − θ2A) (θ3B + θ3A)

(θ3B − θ3A) (θ3B + θ3A)
=
θ2B − θ2A
θ3B − θ3A

, (A23)
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where the inequality is true because we increase the numerator (θ3B > θ2B and θ3A > θ2A).

That is, there exists 1 < T ′ < 2 such that g′θ(T
′) < 0 (i.e., where the derivative is negative).

After somewhat tedious and unenlightening algebra it can be shown that if g′θ(T
′) < 0, then

g′θ(T ) < 0 for all T > T ′. Taken all the above results together, the value of
θT2B−θ

T
2A

θT3B−θ
T
3A

decreases,

and approaches zero as T increases. Since limγ→0+
γ+1

3(γ+2)
= 1

6
and γ+1

3(γ+2)
is strictly increasing

in γ (its first order derivative is always positive), the lower bound of γ+1
3(γ+2)

is 1
6

when γ > 0.

That is, the left hand side of (A20) is greater than 1
6
, and the right hand side decreases and

approaches zero as T increases, so (A20) will be satisfied for some T ∗ < ∞ value. If it is

satisfied for T ∗, then it is also satisfied for all T > T ∗.

A.5 Proof of Proposition 5

Let xA and xB be single-period gross returns on assets A and B, respectively, with µA = µB,

σA = σB, sA > sB, and Kurt(xA) = Kurt(xB). Define XTj =
∏T

t=1 xtj where the xtj-s

are iid and have the same distribution as xj for both assets j ∈ {A,B}. Using the utility

expansion (19) and that E[XTA] = E[XTB] and V ar(XTA) = V ar(XTB) (since µA = µB and

σA = σB), asset B is preferred over horizon T , i.e., E[u(XTB)] > E[u(XTA)], if

γ (γ + 1)

6

V ar (XTB)3/2

E [XTB]γ+2 Skew (XTB)− γ (γ + 1) (γ + 2)

24

V ar (XTB)2

E [XTB]γ+3Kurt (XTB)

>
γ (γ + 1)

6

V ar (XTA)3/2

E [XTA]γ+2 Skew (XTA)− γ (γ + 1) (γ + 2)

24

V ar (XTA)2

E [XTA]γ+3Kurt (XTA) .

(A24)

Using again that E[XTA] = E[XTB] and V ar(XTA) = V ar(XTB), and the formulas for

Skew(XTj) and Kurt(XTj) in equation (7), straightforward algebraic manipulation shows

that the inequality in (A24) is equivalent to

γ + 2

4 (γ + 3)
>
θT3B − θT3A
θT4B − θT4A

, (A25)

where for j ∈ {A,B},

θ3j = sj
σ3
j

µ3
j

+ 3
σ2
j

µ2
j

+ 1 and θ4j = Kurt(xj)
σ4
j

µ4
j

+ 4sj
σ3
j

µ3
j

+ 6
σ2
j

µ2
j

+ 1 (A26)

Using the definitions in (A26), the following inequalities can be established:

• θ4B > θ3B and θ4A > θ3A if sB > −
(
Kurt(xB)

3
σB
µB

+ µB
σB

)
,

• θ3A > θ3B if sA > sB (which is given by assumption), and
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• θ4A > θ4B if sA > sB (which is given by assumption).

Given that sB > −
(
Kurt(xB)

3
σB
µB

+ µB
σB

)
, the above inequalities imply

lim
T→∞

θT3B − θT3A
θT4B − θT4A

= lim
T→∞

(
θ3A
θ4A

)T (( θ3Bθ3A)T − 1

)
((

θ4B
θ4A

)T
− 1

) = 0 . (A27)

Let us define the function hθ(T ) ≡ θT3B−θ
T
3A

θT4B−θ
T
4A

. It is easy to show that hθ(2) < hθ(1), as

θ23B − θ23A
θ24B − θ24A

=
(θ3B − θ3A) (θ3B + θ3A)

(θ4B − θ4A) (θ4B + θ4A)
<

(θ3B − θ3A) (θ4B + θ4A)

(θ4B − θ4A) (θ4B + θ4A)
=
θ3B − θ3A
θ4B − θ4A

, (A28)

where the inequality is true because we increase the numerator (θ4B > θ3B and θ4A > θ3A).

That is, there exists 1 < T ′′ < 2 such that h′θ(T
′′) < 0 (i.e., where the derivative is negative).

After somewhat tedious and unenlightening algebra it can be shown that if h′θ(T
′′) < 0,

then h′θ(T ) < 0 for all T > T ′′. Taken all the above results together, the value of
θT3B−θ

T
3A

θT4B−θ
T
4A

decreases, and approaches zero as T increases. Since limγ→0+
γ+2

4(γ+3)
= 1

6
and γ+2

4(γ+3)
is strictly

increasing in γ (its first order derivative is always positive), the lower bound of γ+2
4(γ+3)

is 1
6

when γ > 0. That is, the left hand side of (A25) is greater than 1
6
, and the right hand side

decreases and approaches zero as T increases, so (A25) will be satisfied for some T ∗∗ < ∞
value. If it is satisfied for T ∗∗, then it is also satisfied for all T > T ∗∗.

A.6 Proof of Proposition 6

Assume that xA ∼ LNIG (ϕA, βA, νA, δA) and xB ∼ LNIG (ϕB, βB, νB, δB). For further

details about the log-NIG distribution see Appendix C.2. Define XTj =
∏T

t=1 xtj where the

xtj-s are iid and have the same distribution as xj for both assets j ∈ {A,B}. Then, similar

to (A53),

XTj ∼ LNIG
(
ϕj, βj, Tνj, T δj

)
. (A29)

Since the NIG distribution is closed under affine transformations (see (A47)), this implies

X1−γ
Tj ∼ LNIG

(
ϕj
|1− γ|

,
βj

1− γ
, (1− γ)Tνj, |1− γ|Tδj

)
. (A30)

Using (A48),

E
[
X1−γ
Tj

]
= eT × exp

(
(1− γ) νj + δj

(√
ϕ2
j − β

2
j −

√
ϕ2
j −

(
βj + 1− γ

)2))
. (A31)

34



Applying the above for T = 1 as well, reveals that E
[
X1−γ
Tj

]
= eTE

[
x1−γj

]
. Therefore, for

any horizon T , and any γ > 0 (γ 6= 1) we have

E
[
x1−γtB

]
> E

[
x1−γtA

]
⇔ E

[
X1−γ
TB

]
> E

[
X1−γ
TA

]
, (A32)

which also implies the result in (22).

B Details of the simulation specification

The simulation results in Section 2.3.2 are based on simulated paths of continuous-time

stochastic-volatility (SV) models. Specifically, we use a specification along the lines of that

originally proposed by Heston (1993). Let X (t) denote the continuous-time price process,

standardized such that X (0) = 1. For any t, X (t)/X (0) = X (t) now represents the

compound gross returns from time 0 to time t. Prices are assumed to be generated according

to the following diffusion model,

dX (t)

X (t)
= αdt+

√
V (t)dWX (t) , (A33)

dV (t) = φ (θ − V (t)) dt+ σV
√
V (t)dWV (t) . (A34)

Here, WX (t) and WV (t) are standard Brownian motions with correlation ρ, and V (t) rep-

resents the stochastic variance process. Expected net returns per time unit are given by

α. φ is the mean reversion parameter for the variance process, θ is the long-run (average)

level of the variance processes, and σV represents the “volatility of volatility”. The process is

simulated by a quadratic exponential discretization scheme, using a step size equal to 1/10th

of a trading day. That is, each simulated month of data represents 210 trading intervals,

using a 21-day trading month. The simulations are initialized with X (0) = 1 and V (t) = θ.

For each simulated path, the equivalent of a 40-year price series is generated. The first 10

years are discarded, such that the starting point for the volatility process is effectively a

draw from its stationary distribution. The remaining 30-years are used to create returns at

the 1, 12, 24, 60, 120, 240, and 360-month horizons. The simulation results are based on 107

simulated sample paths.

The parameters φ and σV are set mostly in line with empirical studies on aggregate U.S.

stock returns (e.g., Andersen et al., 2002,. Eraker et al., 2003, Eraker, 2004). Specifically, on

a daily frequency, the mean reversion parameter φ is set 0.02 and the volatility-of-volatility

parameter is set to 0.002 (i.e., 0.2%). The value of θ is set to correspond to the target

volatility level σ in each specification. Thus, in the daily parametrization of the model,
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θ = σ2/ 21, where σ represents the monthly volatility (set to 0.05, 0.08, 0.11, and 0.17).

Estimates of the correlation, or “leverage” parameter, ρ, varies somewhat across studies and

data sets, with estimates typically ranging between −0.3 and −0.5. In our main specification,

we set ρ = −0.5, but we also simulate alternatives with ρ = 0, and ρ = −0.75. The latter

value is likely empirically too large in absolute magnitude, but serves to illustrate the effects

of strengthening the leverage channel. Setting ρ = 0 implies that the Brownian motions

driving prices and volatility are independent, turning off the leverage effect. While the

leverage effect is quite strong in index returns, it appears much weaker in individual stock

returns (e.g. Kim and Kon, 1994, and Andersen et al., 2001), and for large σ, ρ = 0 might

be the most realistic parameter value. Finally, we set α = 0.01/ 21, representing a monthly

gross return of µ = 1.01.

Note that the returns from an iid log-normal process can be viewed as discretely sampled

returns from a special case of the above model, where V (t) ≡ σ2 for all t. In this case, the

SV model collapses to a standard geometric Brownian motion.

C Alternative measures of asymmetry

C.1 The log-normal distribution

Let xt, t = 1, ..., T , be iid log-normal variables with parameters ψ and η, i.e., xt ∼ LN(ψ, η2).

Note that the parameters of the distribution can be set to match the first two moments of

xt via

ψ = log

(
µ2√
µ2 + σ2

)
and η =

√
log

(
σ2

µ2
+ 1

)
, (A35)

where µ and σ are the expected value and standard deviation of xt, respectively. The T -

period compound return, XT =
∏T

t=1 xt, is then also log-normal:

XT ∼ LN
(
Tψ, Tη2

)
. (A36)

It is obvious that Skew (log(XT )) = 0, since log(XT ) is normally distributed. The asym-

metry measure of Neuberger and Payne (2021), NPSkew, is defined as in equation (17),

which can be rewritten as

NPSkew (XT ) ≡
E
[
6
(
X̃T e

X̃T + X̃T − 2eX̃T + 2
)]

E
[
2
(
eX̃T − 1− X̃T

)]3/2 , (A37)
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where X̃T ≡ log(XT )− m̃T . The constant m̃ is defined such that E [XT ] = em̃T . Note that

this implies E
[
eX̃T
]

= e−m̃TE [XT ] = 1, such that equation (A37) can be rewritten as

NPSkew (XT ) ≡
6E
[
X̃T e

X̃T

]
+ 6E

[
X̃T

]
(
−2E

[
X̃T

])3/2 . (A38)

Also note that E [XT ] = em̃T implies

m̃ ≡ ψ +
η2

2
(A39)

in the log-normal case. The distributional assumption in (A36) thereby implies

E
[
X̃T

]
= E [log(XT )− m̃T ] = −Tη

2

2
and E

[
X̃T e

X̃T
]

=
Tη2

2
. (A40)

Substituting the above into equation (A38) implies NPSkew (XT ) = 0.

Hinkley’s (1975) measure of asymmetry, QSkewα, is defined in equation (15). The dis-

tributional assumption in (A36) implies that for any 0 < a < 1,

Qa(XT ) = exp
(
Tψ +

√
TηΦ−1 (a)

)
, (A41)

where Φ−1 (·) denotes the inverse cdf of the standard normal distribution. Using the above

in equation (15) gives an analytical formula for QSkewα.

The asymmetry measure of Groeneveld and Meeden (1984), QSkew, is calculated ac-

cording the formula in equation (16). The formula can be rewritten as

QSkew(XT ) =
E [XT ]−Q0.5 (XT )

E [|XT −Q0.5 (XT )|]

=
E [XT | XT > Q0.5 (XT )] + E [XT | XT ≤ Q0.5 (XT )]− 2Q0.5 (XT )

E [XT | XT > Q0.5 (XT )]− E [XT | XT ≤ Q0.5 (XT )]
,

(A42)

where the first equality is shown by Groeneveld and Meeden (1984), and the second equality

is a straightforward reformulation. The distributional assumption in (A36) implies

Q0.5 (XT ) = exp (Tψ) ,

E [XT | XT > Q0.5 (XT )] = 2 exp

(
Tψ +

Tη2

2

)
Φ
(√

Tη
)
,

E [XT | XT ≤ Q0.5 (XT )] = 2 exp

(
Tψ +

Tη2

2

)
Φ
(
−
√
Tη
)
,

(A43)
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where Φ (·) denotes the standard normal cdf. Substituting the above into equation (A42)

gives an analytical formula for QSkew.

C.2 The log-NIG distribution

The Normal Inverse Gaussian (NIG) distribution, introduced by Barndorff-Nielsen (1997),

is a four-parameter distribution. Let the random variable z follow a NIG distribution, i.e.

z ∼ NIG (ϕ, β, ν, δ) , (A44)

where ϕ ≥ 0, β, ν, and δ > 0 are the parameters with ϕ2 − β2 > 0. The pdf is

ξ (y;ϕ, β, ν, δ) ≡
ϕδ exp

(
δ
√
ϕ2 − β2 + β(y − ν)

)
π
√
δ2 + (y − ν)2

K1

(
ϕ

√
δ2 + (y − ν)2

)
, (A45)

where K1 is the modified Bessel function of the third kind. The corresponding cdf is

Ψ (y;ϕ, β, ν, δ) ≡
∫ y

−∞
ξ (v;ϕ, β, ν, δ) dv . (A46)

The distribution is closed under affine transformations, and in particular

a+ bz ∼ NIG

(
ϕ

|b|
,
β

b
, a+ bν, |b| δ

)
, (A47)

The moment-generating function of the distribution is

E [exp (kz)] = exp

(
kν + δ

(√
ϕ2 − β2 −

√
ϕ2 − (β + k)2

))
, (A48)

and correspondingly, its first four moments are

E [z] = ν + δ β√
ϕ2−β2

V ar (z) = δ ϕ2√
ϕ2−β2

3

Skew (z) = 3 β

ϕ

√
δ
√
ϕ2−β2

Kurt (z) = 3 + 3

δ
√
ϕ2−β2

(
1 + 4β

2

ϕ2

) (A49)

The normal distribution (with mean µ and volatility σ) is nested in the NIG distribution

with ν = µ, β = 0, δ = σ2ϕ, and letting ϕ → ∞. Another convenient feature of the

distribution is that it is closed under convolution in the following sense: if z1, z2, ..., zT are
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iid NIG (ϕ, β, ν, δ) variables with parameters, then

T∑
t=1

zt ∼ NIG (ϕ, β, Tν, Tδ) . (A50)

Assume that zt ∼ NIG (ϕ, β, ν, δ) are iid for t = 1, ..., T , and the single-period gross

return on an asset or portfolio is xt ≡ exp (zt). That is, the single-period gross return xt

follows a log-NIG distribution, which we denote

xt ≡ exp (zt) ∼ LNIG (ϕ, β, ν, δ) . (A51)

The pdf of xt can be easily derived from the pdf of zt, similarly to any exponentially trans-

formed random variable:

fxt (y) =
1

y
ξ (log (y) ;ϕ, β, ν, δ) . (A52)

We now provide some properties of the log-NIG distribution. First, since the normal distri-

bution is a special case of the NIG distribution, the log-normal distribution is a special case

of the log-NIG distribution. Second, the first four non-central moments of xt are given by

equation (A48), since E
[
xkt
]

= E [exp (kzt)]. Therefore, the parameters ϕ, β, ν, and δ can

be set by matching the first four (non-central) moments. Third, the compound return over

T periods, XT =
∏T

t=1 xt = exp
(∑T

t=1 zt

)
, also follows a log-NIG distribution as implied by

equation (A50):

XT ∼ LNIG (ϕ, β, Tν, Tδ) (A53)

Finally, we provide the alternative measures of asymmetry discussed in the paper, when

XT is distributed as in (A53). log(XT ) in this case has a NIG distribution shown in (A50),

and therefore its skewness (see in (A49)) is

Skew (log (XT )) =
3β

ϕ

√
Tδ
√
ϕ2 − β2

. (A54)

For NPSkew, let us find the value of m̃ first. E [XT ] = em̃T implies

m̃ ≡ ν + δ

(√
ϕ2 − β2 −

√
ϕ2 − (β + 1)2

)
. (A55)
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It can be shown that

E
[
X̃T

]
= Tδ

(
β√

ϕ2 − β2
−
√
ϕ2 − β2 +

√
ϕ2 − (β + 1)2

)
,

E
[
X̃T e

X̃T
]

= Tδ

 (β + 1)√
ϕ2 − (β + 1)2

−
√
ϕ2 − β2 +

√
ϕ2 − (β + 1)2

 .

(A56)

Substituting the above into equation (A38) gives an analytical formula for NPSkew (XT ).

The quantiles of XT can be calculated via

Qa(XT ) = exp
(
Ψ−1 (y;ϕ, β, Tν, Tδ)

)
, (A57)

where Ψ−1 is the inverse of the cdf in (A46). It can also be shown that

E [XT | XT > Q0.5 (XT )] =

= 2 exp

(
Tν + Tδ

(√
ϕ2 − β2 −

√
ϕ2 − (β + 1)2

))
× (1−Ψ (log (Q0.5 (XT )) ;ϕ, β + 1, T ν, T δ))

E [XT | XT ≤ Q0.5 (XT )] =

= 2 exp

(
Tν + Tδ

(√
ϕ2 − β2 −

√
ϕ2 − (β + 1)2

))
×Ψ (log (Q0.5 (XT )) ;ϕ, β + 1, T ν, T δ) ,

(A58)

Substituting the (A57) and (A58) into (A42) leads to a formula for QSkew(XT ). Note that

numerical integration has to be used to calculate the functions Ψ and Ψ−1, but these are

analytical formulas in the same sense as any formula using the functions Φ or Φ−1 (i.e., the

cdf and inverse cdf of the standard normal distribution).
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Figure 1: Skewness of compound returns
The graphs show the skewness of compound returns, Skew (XT ), as a function of the compounding horizon,

T , when single-period returns are iid. The expected value of the single-period gross return is µ = 1.01,

the volatility of the single-period return, σ, varies across the panels (see above each panel), while different

single-period skewness values are represented by the different lines (see legends). The second skewness value

in each panel corresponds to the log-normal case.
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Figure 2: Distribution of the skewness estimator
The graphs display summary statistics of the distribution of the skewness estimator Ŝ, when estimating the

skewness of compound returns. The monthly returns are log-normal with an expected monthly return of 1%

(µ = 1.01) and monthly volatility, σ, that varies across the panels (see above each panel). Monthly returns

are iid, and the compounding horizon is T (see above each panel). The sample size used for estimating the

skewness, n, varies within each graph. The summary statistics shown are the range between the 5th and the

95th percentiles, the median (square marker), and the mean value (diamond marker) of the distribution of Ŝ.

The cross marker shows the upper bound of the possible values of Ŝ. The true skewness value is indicated

by the dotted vertical line in each graph. The summary statistics are obtained via Monte Carlo simulation

using 100,000 simulated samples for each (n, σ, T ) combination.
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Figure 3: Asymptotic standard errors of the skewness estimator
The graph shows two-standard error bounds of the skewness estimator, Ŝ, around the true parameter value,

Skew(XT ) (the true value is indicated by the solid line). The monthly returns are log-normal with a 1%

monthly mean (µ = 1.01) and 17% monthly volatility (σ = 0.17), and the compounding horizon changes

along the horizontal axis. The two-standard error bounds are based on the asymptotic variance of Ŝ from

equation (11). The bounds are shown for two different sample sizes, n = 1015 and n = 1020.
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Figure 4: Skewness of compound returns - the effect of serial correlation
The graphs show the skewness of compound returns as a function of the compounding horizon, T , when

single-period returns might be serially correlated. The values are calculated using equation (14). The single-

period gross return is assumed to be log-normal with mean µ = 1.01 and standard deviation σ that varies

across the panels (see above each panel). The lines correspond to cases where single-period returns are

independent across time (iid), or are serially correlated (V R = 0.9 or 0.8). VR is the ratio between the

long-run and short-run variance of the single-period return, defined in equation (13).
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Figure 5: Alternative measures of asymmetry
The graphs show three measures of asymmetry for compound returns: the quantile-based measure of Groen-

eveld and Meeden (1984) (QSkew), the skewness of log returns (logSkew), and the asymmetry measure

of Neuberger and Payne (2021) (NPSkew). Monthly returns are iid and the compounding horizon is T

months (see the x-axis). The monthly expected return is 1% and the monthly volatility, σ, varies across the

graphs (see above each panel). Three distributions for monthly returns are considered in each graph: (i)

log-normal (dashed line), (ii) log-NIG with Skew(x) = −2 and Kurt(x) = 15 (solid line), and (iii) log-NIG

with Skew(x) = 2 and Kurt(x) = 15 (dash-dotted line).
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Figure 6: Analytical densities of log-normally distributed compound returns
The graphs show the density of compound returns for different compounding horizons, T , when monthly

returns are iid log-normally distributed. The expected value of the single-period (monthly) gross returns are

µ = 1.01. Each line in each panel corresponds to different single-period volatilities, σ (see legends). The

compounding horizon, T , is varied across the panels. The mean of the compound returns is indicated with

a solid vertical line.
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Figure 7: Densities of 5-year compound returns for various monthly return processes
The graphs show the density of compound returns for a compounding horizon of 5 years (T = 60 months)

for different data generating processes and different single-period volatilities. The expected value of the

single-period gross return is µ = 1.01 in all cases, the volatility of the single-period return, σ, is varied across

the panels (see above each panel). In the “log-normal” case, single-period returns are iid log-normal; the

corresponding density is analytical. In the “log-NIG” case, single-period returns are iid and the higher order

moments are set to Skew(x) = −1 and Kurt(x) = 5; the corresponding density is analytical. “SV” refers

to the stochastic volatility with standard leverage model described in Section 2.3.2; the “SV” densities are

obtained through kernel estimates of simulated data using 107 observations. The mean of the compound

returns is indicated with a solid vertical line.
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Figure 8: Ranking two assets using Taylor approximations of expected utility
Panel A shows the expected utility calculated via the third order version of (19) with γ = 5 for two assets

as a function of the investment horizon T . The monthly return moments on the assets are µA = µB = 1.01,

σA = 0.05, σB = 0.1, and sA = sB = 0. Panel B shows the threshold horizon, T ∗; the investor prefers asset B

(the high-volatility asset) over horizons longer than T ∗. The values of γ and σB are varied in Panel B, while

the other parameters are the same as in Panel A. Panel C shows the expected utility calculated via (19) with

γ = 5 for two assets with monthly return moments µA = µB = 1.01, σA = σB = 0.08, sA = 0, sB = −1,

and Kurt(xA) = Kurt(xB) = 5. Panel D shows the threshold horizon, T ∗∗; the investor prefers asset B

(the negatively skewed asset) over horizons longer than T ∗∗. The values of γ and the common volatility

σ = σA = σB are varied in Panel D, while the other parameters are the same as in Panel C. The returns on

the assets are iid across time in all cases.
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Table 1: Skewness of compound returns
The table shows the skewness of compound returns, Skew (XT ), for various compounding horizons T (in
different rows), when single-period returns are iid. The values are calculated using equation (7). The
expected value of the single-period gross return is 1% (µ = 1.01), the volatility of the single-period return,
σ, varies across the columns, while the skewness of the single-period return, s, varies across the panels.

T σ =0.05 σ =0.08 σ =0.11 σ =0.17

A. s = 0
1 0.00 0.00 0.00 0.00
12 0.48 0.78 1.10 1.86
24 0.72 1.21 1.78 3.45
60 1.23 2.26 3.89 13.2
120 1.93 4.24 10.2 123
240 3.36 11.7 68.5 1.4× 104

360 5.19 32.1 513 1.6× 106

B. The log-normal case: s = σ
µ

(
σ2

µ2 + 3
)

1 0.15 0.24 0.33 0.51
12 0.52 0.86 1.23 2.14
24 0.75 1.27 1.90 3.87
60 1.26 2.33 4.09 15.3
120 1.95 4.35 10.8 161
240 3.40 12.1 75.7 2.3× 104

360 5.25 33.5 595 3.6× 106

C. s = 2
1 2.00 2.00 2.00 2.00
12 1.09 1.46 1.88 3.03
24 1.18 1.77 2.54 5.22
60 1.59 2.86 5.15 23.4
120 2.28 5.23 14.4 351
240 3.85 15.3 125 1.1× 105

360 5.95 46.1 1.3× 103 3.7× 107

D. s = −2
1 −2.00 −2.00 −2.00 −2.00
12 −0.13 0.11 0.34 0.79
24 0.26 0.65 1.06 2.00
60 0.88 1.70 2.81 7.13
120 1.58 3.37 7.06 42.1
240 2.91 8.91 37.3 1.6× 103

360 4.50 22.3 209 6.6× 104
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Table 3: Mean, median, and probability of beating the mean for log-normal returns.
The table shows the mean, the median, and the probability of the returns exceeding the mean for different
combinations of single-period volatility, σ, and compounding horizon T . The single-period returns are iid
log-normal, with a 1% expected return (µ = 1.01).

Mean Median Probability of returns>mean
T σ = 0.05 σ = 0.08 σ = 0.11 σ = 0.17 σ = 0.05 σ = 0.08 σ = 0.11 σ = 0.17

1 1.01 1.01 1.01 1.00 1.00 49.0% 48.4% 47.8% 46.7%
12 1.13 1.11 1.09 1.05 0.95 46.6% 44.6% 42.5% 38.6%
24 1.27 1.23 1.18 1.10 0.91 45.2% 42.3% 39.5% 34.1%
60 1.82 1.69 1.51 1.28 0.79 42.4% 38.0% 33.7% 25.9%
120 3.30 2.85 2.27 1.63 0.62 39.3% 33.2% 27.6% 18.0%
240 10.9 8.12 5.14 2.65 0.38 35.1% 27.0% 20.0% 9.8%
360 35.9 23.14 11.66 4.30 0.24 31.9% 22.7% 15.1% 5.6%
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