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Abstract

Anthropogenic climate change is due to burning fossil fuels and the consequent

release of greenhouse gases. Given current technology, a transition towards low-

carbon economies requires investments to shift away from carbon intensive assets.

The systemic implications of disruptive technological progress on the prices of such

assets are compounded by the geopolitical nature of transition risk. If investors are

pricing climate change risk, prices of carbon intensive assets should all be responsive

to climate change news. We propose a new modeling approach to analyze to what

extent stock markets are reacting to climate change. For modeling the dynamics of

volatility comovements at the global scale, we measure global carbon-intensive asset

volatility using a novel model of multiplicative volatility factors. The model is ap-

plied to the daily stock prices of major oil and gas companies around the world. As

the proxy for climate change perception, we use a climate change news index, which

is constructed by applying text mining to newspaper content. By linking both sides,

financial and climate change, results point out a significant effect of climate change

volatility shocks on oil and gas stock return volatilities globally. Even though cli-

mate change shocks amplify the effect of crude oil volatility shocks on the oil and gas

volatilities, they seem to have no direct effect on the volatility of the crude oil future.

1 Introduction

We frequently hear about the urgency of moving investments from brown financial assets

to green assets. Brown assets are carbon-intensive and usually associated to fossil fuels
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such as coal, oil and natural gas, which are intrinsically high in carbon. Green assets are

associated to cleaner energy and so low in carbon. Anthropogenic climate change is due

to burning fossil fuels and its consequent release of greenhouse gases. Carbon dioxide, a

greenhouse gas, is probably the most tracked carbon compound. The greenhouse effect of

excessive carbon dioxide emissions has been accelerating global warming and disrupting

the normal cycle of carbon. In order to reduce the carbon footprint and mitigate the global

effects of climate change, a transition to low carbon economies is a work in progress. Given

current technology, a shift away from fossil fuels is inevitable for countries to be successful.

Regarding the transmission channels of climate change to the financial sector, climate

change risk is usually characterized as either physical or transitional. Even though there

are attempts to analyze these risks separately, they are strongly related. The exposure

posed by more frequent and severe climate-related disasters is likely to increase awareness

and concerns about climate change. Hence, physical risk is likely to spill over and change

the expectations about policy responses, especially carbon prices. It can thus amplify the

uncertainty about the timing and speed of adjustment towards a low-carbon economy.

Moreover, although some regions or countries are not directly exposed to physical risk,

they can be indirectly affected by others that are particularly vulnerable through the

international relations between the two.

A transition towards low-carbon economies will most certainly come alongside invest-

ments shifting away from activities that are carbon intensive. However, countries are still

highly dependent on fossil fuels to produce energy. According to the Statistical Review

of World Energy (BP, 2020), the distribution of the primary energy consumption by fuel

type around the world indicates that, on average, 84% of primary energy is produced

by means of fossil fuels (oil, coal and natural gas) and only 16% by non-fossil fuels (hy-

droelectricity, renewable energy, and nuclear energy). Coal is by far the worst polluter

among fossil fuels and yet, in countries such as China and India, more than 50% of their

primary energy consumption depends on coal. The effectiveness of changes in investment

decisions also depends on the expectations about policy change (e.g. regarding carbon

pricing). The systemic implications of disruptive technological progress on the prices of

carbon-intensive assets are further compounded by the geopolitical nature of transition
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risk.

The finance literature on climate change has been focused on the pricing of climate

change risks, in particular, on how stock returns reflect investor concerns about climate

change. Bolton and Kacperczyk (forthcoming) provides a cross-country analysis of the ef-

fects of corporate carbon emissions and a country’s transition risk on the stock returns. A

company’s carbon premium seems to be related to not only its level of emissions (long-run

exposure to transition risk) but also changes in its level of emissions (short-run exposure

to transition risk). Moreover, the carbon premium tends to be higher (lower) in countries

with a higher share of brown (green) sectors (even though it does not seem to reflect

physical risk).

If investors are pricing transition risk, one should expect the prices of brown assets

to be responsive to climate change news given investor awareness about climate change

seems to amplify the level of transition risk (Bolton and Kacperczyk, forthcoming). In

order to analyze to what extent financial asset prices are reacting to climate change

news, we propose a two-sided procedure. On one side of the analysis we have the brown

financial asset prices. A volatility shock to climate change news should affect a wide

range of brown assets (if not all) at the same time. Hence, we take financial markets as

a whole and measure the comovements of volatilities of financial asset returns using a

global volatility factor. On the other side, we control for climate change news. Volatility

shocks arising from climate change news are identified and assumed to be an additional

determinant of the global volatility factor.

Studies on the impact of climate change on financial markets include the analysis of

value at risk associated with climate shocks (Dietz et al., 2016) in which financial losses

are aggregated and derived top-down from estimated output losses due to climate change

or of climate stress-tests of the financial system as the inter-linkages among financial

institutions may amplify both positive and negative shocks (Battiston et al., 2017).

The high uncertainty around future demand for fossil fuels and their role in the tran-

sition process towards low carbon economies, make them particularly relevant. Are fossil

fuel stock returns responsive to climate change news? If they are exposed to climate

change risk posed by policy action such as carbon pricing, they should be. Investing in
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activities that are not viable in a low carbon economy makes investors less resilient to

climate change risks and more exposed to lower financial returns. The most relevant cli-

mate change risk in our analysis is transition risk. The uncertainty about the timing and

speed of transition towards a low carbon economy is what we mean by transition risk.

If investors are pricing transition risk, this implies prices of high-carbon assets should

all be responsive to climate-related policy news. For modeling the dynamics of volatil-

ity comovements at the global scale, we use the global volatility factor model of Engle

and Campos-Martins (2020). The model was introduced for modeling comovements of

idiosyncratic volatilities. When innovations to volatilities are correlated across assets,

common volatility shocks can be identified. Economic, political or military events impact

volatilities of a wide range of financial assets and move markets. The global volatility

factor is thus interpreted as a measure of magnitude of the common volatility shocks and

is intended to capture geopolitical risk due to its broad impact on many assets. The global

volatility factor model is applied to the daily share prices of oil and gas companies from

different countries traded in the NYSE to assure synchronicity of observations. Global oil

and gas volatility peaks after the 9/11 terrorist attack, during the global financial crisis

in 2008, whereas OPEC announcements and the Saudi drone attack show up as recent

extreme global volatility events. As a proxy for climate change risk, we use the climate

change news index of Engle et al. (2020). This index is a time series that captures news

about long-run climate risk. In particular, we use the innovations in their negative (or

bad) news time series which is constructed by using sentiment analysis. Results point

out a changing (increasingly positive) effect of climate change volatility shocks to the

bad news index on global oil and gas volatility over time. Different oil and gas assets

are affected differently by the global volatility factor and this is reflected by the different

loadings across assets. The results point out a significant effect of climate change volatil-

ity shocks to oil and gas stock return volatilities but not to the oil 1-month future return

volatility. Instead, oil and gas volatility shocks driven by oil shocks are amplified by bad

climate change news.

The paper is organized as follows. In the following section 2, the global volatility

factor model with heterogeneous effects of the factor on the volatilities is summarized and
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the estimation results are presented for oil and gas stocks. Subsequently, in section 3, we

develop the strategy addressed to identify the volatility shocks driven by climate change

news and which can affect financial markets. Section 4 links volatility shocks to oil and

gas stock returns with volatility shocks to climate change innovations using regression

analysis. Finally, section 6 concludes the paper.

2 Modeling volatility comovements of stock returns

It is a stylized fact that financial volatilities comove. This is not surprising if asset re-

turns respond to the some factors. Interestingly, whatever factors are extracted from the

returns, idiosyncratic volatilities still comove (Herskovic et al., 2016); See also Connor

et al. (2006) and Ang et al. (2006) for some references in the literature on idiosyncratic

volatility. Engle and Campos-Martins (2020) propose a new model of idiosyncratic volatil-

ity comovements based on a multiplicative decomposition of the volatility standardized

returns. When many assets respond to the same news at the same time, shocks to volatil-

ities are correlated. The new statistical model is thus able to capture common volatility

shocks that make markets move at the same time. We shall now briefly describe this

global volatility factor model.

Consider the (n× 1) vector of returns rt = (r1t, . . . , rnt)
′ given by

f t = w′t−1rt (1)

rt = rf + Bf t + diag(
√
ht)et,

where w ≡ (w1, . . . , wn)′ are weights, B is an (n × p) matrix of risk exposures, f t is a

(p × 1) vector of factors, ht ≡ (h1, . . . , hn)′ contains idiosyncratic conditional variances

and et ≡ (e1, . . . , en)′ the idiosyncrasies.

Assume factors are sufficient to reduce the contemporaneous correlations to zero such

that Et−1(ete
′
t) = I. This standard assumption states that the volatility standardized

residuals are orthogonal in both times series and cross section with unit variances. This

does not mean however that the elements of et are independent. The fundamental obser-

vation of the model is that the squares of et can be correlated in the cross section.
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Let xt, t = 1, . . . , T , denote the global volatility factor, a positive scalar random vari-

able (latent) with mean 1 and variance υ which is independent of εt = (ε1t, . . . , εnt)
′. The

factor loadings are denoted by si, i = 1, . . . , n and interpreted as parameters (fixed effects).

The standardized residuals are then assumed to have the multiplicative decomposition

eit =
√
git(si, xt)εit, (2)

where git(si, xt) is non-negative for every t ∈ [1, T ] with E[git(si, xt)] = 1 which satisfies

E[e2it] = 1 for every i. Each of the heterogeneous volatility factors is specified as

git(si, xt) ≡ sixt + 1− si, (3)

xt > 0, t = 1, . . . , T , and 0 ≤ si ≤ 1, i = 1, . . . , n. Recall that Et−1[ete
′
t] = I. But (2)

implies Et−1[e
2
t (e

2
t )
′] = Ψ. The variance-covariance matrix of the squared standardized

residuals e2t is assumed as non diagonal with different elements. For further details we

refer to Engle and Campos-Martins (2020).

Assuming normality, the log-likelihood function for the volatility standardized residu-

als is simply

`(eit, si|xt) = −1

2

{
ln 2π + ln git(si, xt) +

e2it
git(si, xt)

}
(4)

and the first order conditions are the partial derivatives with respect to the two sets of

unknowns si and xt,

∂
∑T

t=1 `(eit, si|xt)
∂si

= 0

∂
∑n

i=1 `(eit, si|xt)
∂xt

= 0,

for all i and t. These conditions define the following time-series and cross-sectional het-

eroskedasticity regressions:

Time-Series: eit =
√
si(x̂t − 1) + 1εit for i = 1, . . . , n, (5)

Cross-Section: eit =
√
ŝi(xt − 1) + 1εit for t = 1, . . . , T.
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Since each partial derivative depends upon the other estimates, a joint maximum can

be achieved if the estimation of the two regressions are iterated until convergence in a

maximization-maximization procedure (Hastie et al., 2009).

Finally, to detect common volatility shocks, we test the null hypothesis that the

squared standardized residuals are uncorrelated. The null hypothesis of no correlation

is defined as

H0 : Ψ = 2I, Et−1[e
2
t (e

2
t )
′] ≡ Ψ, (6)

where e2t = (e21t, . . . , e
2
nt)
′. Without loss of generality, e2t are assumed to be equicorrelated

under the alternative. Hence, it is straightforward to test H′0 : ρ̄e2 = 0 against H′1 : ρ̄e2 > 0.

For n(n− 1)/2 correlations, the statistic simplifies to

ξ =

√
nT

(n− 1)/2

∑T
i>j,j=1

∑T
t=1(e

2
it − 1)(e2jt − 1)∑n

i=1

∑T
t=1(e

2
it − 1)2

d→ N (0, 1) under H′0. (7)

2.1 The oil and gas common volatility shocks

For modeling volatility co-movements at the global scale, a volatility factor model is used.

Oil and gas global volatility shocks are related to demand shocks (global financial crisis,

China slowdown) and supply shocks (e.g. OPEC announcements, which in turn affect oil

prices).

To analyze to what extent climate change news affects financial markets, we use two

indicators: one that captures the common shocks to the volatilities of oil and gas stocks

returns and the other that works as a proxy for climate change perception or awareness.

For a discussion on the climate-policy relevant sectors in the economy we refer to Battis-

ton et al. (2017). On the financial side, we use daily closing prices of shares from twenty

major oil and gas companies around the world but traded in the New York Stock Ex-

change. This way we are guaranteed to have synchronous observations when measuring

the comovements. The sample period goes from April 4, 1983 until October 31, 2019.

This is an unbalanced panel with a minimum of eight observations per day. Because

the time series are not stationary, we convert prices into log-returns. Extreme positive

(negative) returns are truncated to ±10%. Our modeling framework starts by estimat-
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ing a factor model with GARCH errors for each asset. To model the time dependence

in the first moment of the data, a first-order autoregressive AR(1) model is fitted when

necessary. The choice of the order of the AR model is supported by Ljung-Box AR(1)

test. To account for common factors affecting the series of returns, we assume a Fama

and French three factor model. We also include the excess returns on the WTI 1-month

future price as a covariate. To model the heteroskedasticity behavior of the series, a first

order GARCH(1,1) model is assumed for the errors. Both cross-section averaged excess

returns and cross-section averaged estimated volatilities are depicted in Figure 1. For

comparison, both cross-section averaged estimated volatilities of oil and gas stock returns

(black) and the estimated volatility of the excess returns of the S&P 500 index (a), the

WTI crude oil future (b) and the energy sector ETF (c) are also shown (blue) in Figure

2.

Even after extracting factors, including the excess returns on the WTI, idiosyncratic

volatilities are still correlated. The correlation between the average volatility of oil and

gas returns and the volatility of returns on the WTI future is 0.505, on the energy sector

ETF (XLE) is 0.666, and on the S&P 500 index is 0.612. Even though the correlations

are high, especially for the energy sector ETF, they do not perfectly match the variation

captured in the oil and gas returns. The average correlation within oil and gas volatilities

is 0.533 and the first principal component accounts around 44% of the total variance

of volatilities. Having estimated the series of residuals and volatilities, we compute the

vector of standardized residuals êt, t = 1, . . . , T . To detect the presence of significant

common volatility shocks over time, we test whether the average correlation of e2t is equal

to zero. We test H0 : ρ̄e2 = 0 against the one-sided H0 : ρ̄e2 > 0. The empirical average

correlation ρ̄e2 = 0.093. For this sample, the test statistic is ξ = 110.687 and we thus

strongly reject the hypothesis that the average correlation of the squared standardized

residuals is zero. This result provides evidence that the squared standardized residuals

are correlated and so we proceed to the estimation of the oil and gas volatility factor in

order to capture the common shocks driving the common movements of volatilities.

We shall briefly describe the iterative estimation of the oil and gas volatility factor and

corresponding factor loadings. As the starting values for the estimation of xt, t = 1, . . . , T ,
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Figure 1: Cross-section averaged oil and gas excess returns and residuals from Fama and
French factor model.
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Figure 2: Monthly means of the cross-section averages of oil and gas idiosyncratic volatil-
ities (gray). For comparison, the monthly average of the volatility of the S&P 500 index,
of the 1-month WTI crude oil future, and of the SPDR energy sector ETF are also shown
(blue).
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record the factor loadings on the first principal component of e2. This is not necessary as

the algorithm converges to the same optimal solution when we choose other initial values.

Take the estimated standardized residuals as observable and iterate the estimation of the

heteroskedasticity regressions defined in (5) until convergence. In each iteration, impose

the normalization xt/(1/T )
∑T

t=1 xt and
∑n

i=1 s
2
i = 1 after estimating, respectively, the

cross-section and the time-series regression. For this empirical sample, 15 iterations were

performed until the algorithm converged.

The most extreme common oil and gas volatility shocks are summarized in Table 1.

For comparison, the returns on the same day are shown for the cross-section average of

oil and gas stocks (r̄t), the S&P 500 index (rSPXt ), the crude oil 1-month future (rWTI
t ),

and the SPDR energy sector ETF (rXLE
t ). Several dates are easily recognized as being

dates when major events happened affecting financial markets, in general, and not just

the oil and gas stocks. Many extreme shocks coincide with large negative returns but

we also observe large volatility shocks for some positive returns. The extreme values

observed in the global oil and gas volatility factor are strongly correlated with large WTI

or XLE returns (or both) and also with the SPX returns. Geopolitical events should

affect all assets, asset classes and countries. The last event shown is the day after the

2016 United Kingdom European Union membership referendum in favor of the UK to

leave the European Union. This event appears to have caused large negative returns

across all the indices showing up in the global volatility factor model as one of the biggest

common shocks affecting a wide range of assets (if not all).

The monthly means of the estimated global oil and gas volatility factor are plotted in

Figure 3 and some of the largest shocks are labeled. The largest common volatility shocks

are financial (stock crashes), economic (global crisis), military (the 9/11 terrorist attack)

and political (U.S. Presidential election of Donald Trump or Brexit). These shocks are

more likely to affect demand for oil rather than, for instance, OPEC decisions regarding

oil production which have effects on the supply side.

The empirical variances and covariances of the squared standardized residuals are not

equal across oil and gas stocks. This is likely to be reflecting the fact that different assets

have different loadings on the global volatility factor. The factor loadings captures the
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Table 1: The largest estimated global shocks and the values of the returns on the same
day. r̄t denotes cross-section average of oil and gas stocks, rSPXt the S&P 500 index, rWTI

t

the crude oil 1-month future, and rXLE
t the SPDR energy sector ETF.

t x̂t r̄t rSPXt rWTI
t rXLE

t

1989-10-13 43.710 −6.419 −6.312 2.031
2014-11-28 32.381 −8.040 −0.255 −10.794 −6.640
1987-10-20 24.796 4.216 5.195 0.256
2000-03-07 24.006 5.814 −2.597 5.883 6.673
1992-05-26 23.427 4.024 −0.632 4.938
2000-10-13 21.893 −3.405 3.284 −3.012 −3.900
2008-07-16 21.814 −1.385 2.475 −3.029 −2.608
1998-09-04 20.164 3.987 −0.856 −0.547
2001-09-17 19.523 −1.717 −5.047 4.182 −2.065
1985-12-09 19.449 −4.270 0.619 −4.374
2001-01-03 18.998 −2.370 4.888 2.862 −3.101
2019-04-12 18.547 1.152 0.659 0.486 0.267
1984-10-17 18.175 −4.373 −0.389 −2.865
1987-10-21 17.918 2.749 8.709 2.374
2010-04-29 17.512 0.309 1.286 2.316 0.115
2011-02-22 17.170 −1.522 −2.074 8.204 −0.979
1993-06-11 16.779 −3.188 0.421 −1.568
1985-07-05 16.672 −0.351 0.557 0
2019-09-16 16.613 5.130 −0.314 13.694 3.301
2016-11-30 16.170 6.367 −0.266 8.900 4.958
1985-12-10 15.829 −3.497 0.069 −8.652
2001-09-24 14.633 −2.056 3.824 −16.545 −2.667
1995-09-21 14.545 0.307 −0.645 −6.237
1984-08-02 14.441 0.907 2.506 3.287
2016-06-24 14.326 −6.162 −3.658 −5.055 −3.285
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Figure 3: The (monthly) oil and gas global volatility factor.

proportion of the global volatility factor that is affecting the volatility of the asset. The

estimated factor loading for the oil and gas assets are presented in Table 2 in descending

order. As expected, the effects of the global volatility factor on the volatilities are hetero-

geneous across assets. These differences in the factor loadings make it possible to hedge

against geopolitical risk by using a new criterion for portfolio optimality; See Engle and

Campos-Martins (2020) for more details.

As a measure of the goodness of the fit, we re-run the test for common volatility

shocks on the standardized residuals, now standardized by the square root of the global

Table 2: The estimated oil and gas factor loadings.

ŝi
Shell 0.268
BP 0.262
Occidental 0.251
ConocoPhillips 0.248
Chevron 0.246
ExxonMobil 0.229
Equinor 0.226
Schlumberger 0.225
Total 0.223
Halliburton 0.223
EOG 0.218

ŝi
Suncor 0.218
Eni 0.217
Devon 0.212
Repsol 0.197
PetroChina 0.196
Canadian Resources 0.191
Sinopec 0.189
CNOOC 0.177
WTI 0.168
SPX 0.128
Petrobras 0.097
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volatility factor. The null hypothesis is re-defined to H02 : ρ̄e2/x̂ = 0, where x contains

the heterogeneous volatility factors xit ≡ git(si, xt) defined in (3), i = 1, . . . , n, against the

one-sided alternative that the average correlation standardized by the estimated volatility

factors is positive. The empirical ρ̄e2/x̂ = −0.009 and the test statistic is −5.745. This

failure to reject the null of no correlation in the square standardized returns e2/x̂, supports

the multiplicative decomposition of the standardized residuals and its ability to capture

the common volatility shocks driving changes in the financial markets, where we have a

particular interest in oil and gas stocks.

The global volatility factor previously denoted by x, will for the remaining of the paper

be denoted by ”GVOL” to make the interpretation of results more intuitive.

3 Measuring climate change volatility shocks

Two main transmission channels of climate change risk to financial markets are usually

pointed out in the literature. These are referred to as physical and transition risks. Cli-

mate change can adversely impact capital stock, economic activities and markets directly

as more frequent and severe climate-related disasters occur and are predicted for the up-

coming years. Clearly the social, economic and political impact of physical risk is mostly

country-specific, but it also has potential systemic implications. A country that is less

vulnerable to climate-related events can still have a great indirect exposure to physical risk

through international relations with countries that are particularly vulnerable. Financial

stability is however most likely to be affected by climate change indirectly through in-

creasing transition risk. As the uncertainty about the timing and the speed of adjustment

towards low- or zero-carbon economies increases, so does transition risk. The systemic

implications that climate change pose to financial markets are thus most likely to come

from transition risk spillovers within carbon-intensive sectors. In order to mitigate the cli-

mate change effects, countries have to be aligned in reducing their carbon footprint where

there is no room for free riding. For carbon-intensive activities, transition risk includes

the impact on the asset prices of policy changes towards carbon pricing, legislation like

the UK’s Climate Change Act of 2008 and disruptive technological progress.

From a cross-country analysis on the impact of climate-related disasters on aggregate
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stock market indices from 68 developed and emerging countries since 1980, ? found

no significant effect of climate change physical risk on equity valuations. Even though

financial losses can be massive and vary widely, they conclude that the reaction of equity

prices to large climatic disasters is relatively modest. Other country’s characteristics such

as a higher rate of insurance penetration and a greater sovereign financial strength seem to

explain this low impact and so improved financial stability. Yet, the authors argued that

equity investors may not be paying sufficient attention to climate variables. Interestingly,

the same study shows that investors in long-term sovereign bonds demanded a premium

from countries with high climate risk meaning that investors do appear to be pricing

climate change physical risks when making long-term investment decisions.

This seems consistent with Bolton and Kacperczyk (forthcoming) whose findings in-

dicate that stock returns do not reflect physical risks. Because no significantly different

carbon premium is found for stocks from countries more exposed to physical risk but it is

found for countries associated to higher transition risk, these results suggest that physical

risk is not positively correlated with transition risk which appears to be relatively more

salient to investors. Possible explanations are provided and include the temporal nature of

each type of risk, where physical risk seems to be heavily discounted by investors because

of its long-term nature whereas transition risk tends to materialize in a shorter horizon.

Griffin et al. (2019) provides evidence that physical risk is being (under) priced by equity

investors in the US by matching climate-related events to individual firms. This result

suggests physical risk may be local-specific and its financial market effects mostly concen-

trated in the area affected whereas transition risk can be expected to have wider (global)

effects given it is geopolitical by nature. The results also indicate that equity returns seem

to respond negatively where the magnitude of the response appears to vary with the cost

and duration of the climate-related events. Underpricing is more evident and the increase

in equity market volatility is more pronounced for costlier and longer-duration events.

The main goal of this paper is to analyze to what extent climate change risk is affecting

financial market volatilities. We are particularly interested in the exposure of financial

markets to transition risk arising from the likelihood of economies going low-carbon. In

this setting, carbon-intensive assets are expected to be particularly affected. So far we
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have been focused on the prices of oil and gas companies. Because all prices should

be responsive to climate change risk, even though with different magnitudes, we take a

measure that captures the magnitude of unexpected volatility shocks common to a wide

range of oil and gas prices at the same time. We then consider climate change news as

a determinant of common volatility shocks to oil and gas stock prices as climate policies

are presumably affecting the value of equity holdings in the fossil sector (Leaton, 2012).

In assessing climate change, much research has relied on rising mean temperature

levels. Diebold and Rudebusch (2019) go a step further and propose a novel range-based

measure of daily temperature volatility. The new measure of temperature volatility is

called the diurnal temperature range and is defined as the difference between the daily

maximum and minimum temperatures at a given location. However, when assessing

how climate change is affecting financial markets through transitional risk, it is difficult

to think that shocks to temperature volatility will impact the volatilities of many asset

returns around the world.

Instead, as a proxy for climate change, we use the monthly climate change news index

of Engle et al. (2020). Using textual analysis of daily Wall Street Journal (WSJ) newspa-

per, the climate change news index measures the fraction of its text content dedicated to

the topic of climate change. The climate change vocabulary is defined as a set of repre-

sentative words from relevant texts published by governments and research organizations.

To construct the index, a score is assigned to each edition of the WSJ based on the rele-

vance of its climate change content. For instance, a low score is attributed to a particular

edition if it has terms that appear in most editions on other days as well. The low score is

thus intended to reflect the less informative WSJ content on that particular day. A high

score, on the other hand, reflects a text content on a given day with representative terms

that appear infrequently overall but frequently in that day’s newspaper edition. The in-

dex is then computed as the cosine similarity between the scores and each edition of the

WSJ. The index ranges between zero - no words on the WSJ match the climate change

vocabulary - and unity - if text content of the WSJ shows the same terms in the same

proportion as the authoritative texts used to construct the vocabulary. This monthly

index is available between 1984/01 and 2017/06. To distinguish between positive news
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Figure 4: The monthly general and the bad or negative climate change news index of
Engle et al. (2020).

and negative news, a different version of the index is provided. Using sentiment analysis,

bad news about climate change can be identified and a climate change bad news index is

constructed for the period between 2008/06 and 2017/06. Both indices, general and bad

news, are plotted in Figure 4. Notice that the actual values of the index were multiplied

by 1000 and then plotted.

Supported by the Ljung-Box AR(1) and ARCH(1) test results, we estimate an AR(1)

model with GARCH(1,1) errors for each climate change news index. The innovations and

estimated volatilities are depicted, respectively, (a)-(b) and (c)-(d) panels of Figure 5 for

general then bad news indices.

To compute the climate change volatility shocks, we start by modeling the climate

change news index CCIt, t = 1, . . . , T , as an AR(1) process. A climate change volatility

shock is then defined as

e2CCI,t − 1 =
(CCIt − µCC − βCCCCIt−1)

2 − hCC,t

hCC,t

, (8)

where µCC is the intercept in the mean equation, βCC is the coefficient of the first-order

autoregressive term, and hCC,t is the variance of the residuals from the mean equation
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Figure 5: The estimated innovations and volatilities of the general (upper) and bad or
negative (bottom) climate change news index.
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of the climate change news index. The climate change volatility shock represents the

proportional difference between the squared innovations in the climate change news index

and its expectation. The realized squared innovations are on some days bigger than one

and on other days smaller than one. If oil and gas assets have squared innovations bigger

than one at the same time, this can be interpreted as a common volatility shock which

can be generally associated with geopolitical news. If it coincides with relevant climate

change news, then the geopolitical risk on that day is regarded as climate change risk.

4 Disentangling the oil and gas volatility shocks

In this section we start by introducing a more general formula to define volatility shocks.

The volatility shock to the oil and gas asset i,

e2it − 1 =
(rit − rf − β′if t)

2 − hit
hit

. (9)

This strategy to identify volatility shocks applies to the S&P 500 index and the WTI

crude oil 1-month future as well. Moreover, because a common volatility shock to the oil

and gas assets may also be driven by relevant volatility shocks to these indices, they are

include as determinants of oil and gas volatility shocks.

Common volatility shocks to oil and gas stock returns come from different sources.

To analyze to what extent climate change news affects financial markets, we define and

compute a climate change volatility shock as before. To control for other relevant shocks

affecting these stocks, we also consider volatility shocks to the WTI oil price and the

S&P 500 index as sources of unexpected volatility shocks to the oil and gas stock prices.

Both stock market and climate change shocks are interpreted as oil and gas volatility

shocks coming from the demand side. The volatility shocks arising from oil price shocks

are interpreted as supply volatility shocks as they are most likely to be due to OPEC

decisions regarding oil production. Naturally, it can be argued that oil price shocks are

likely to induce stock market shocks as oil prices tend to affect total output as well.

In Table 3, we present the estimation results for the multiple linear regressions of

common oil and gas volatility shocks on the three potential determinants, namely climate
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change (CC), stock market (SPX) and oil (WTI) volatility shocks. To disentangle be-

tween bad and good news on climate change, we use both climate change news indices as

determinants of oil and gas volatility shocks. The volatility shocks computed using the

complete climate change news index are denoted by ”CC” and using the negative climate

change news index by ”nCC”. The sample size for the negative news is limited to the

period between 2008/06 until 2017/06. Note also that from 2008/06 the oil and gas panel

is balanced (with no missing values).

Table 3: Estimation results for the determinants of oil and gas volatility shocks (monthly
averages, GVOLm

t ). The regressors include the volatility shocks to the complete (CCt)
and negative (nCCt) climate change news index, to the S&P 500 index (SPXt) and the
WTI oil 1-month future (WTIt).

(1)

GVOLm
t−1 0.224∗∗∗

(0.071)
CCt −0.029∗∗

(0.014)
nCCt 0.050∗∗

(0.023)
SPXt 0.375∗∗∗

(0.101)
WTIt 0.603∗∗∗

(0.097)
SPXt × CCt

WTIt × CCt

SPXt × nCCt

WTIt × nCCt

Constant 0.677∗∗∗

(0.076)

Observations 107
R2 0.481
σ̂ 0.432
χ2
AR(2) 4.176

(0.124)
χ2
ARCH(1) 0.217

(0.641)

(2)

−0.028∗

(0.015)
0.043∗

(0.024)
0.374∗∗∗

(0.106)
0.623∗∗∗

(0.102)
−0.028
(0.055)

0.002
(0.055)

0.229∗∗∗

(0.071)
0.672∗∗∗

(0.077)

107
0.486
0.434
3.979

(0.137)
0.252

(0.616)

(3)

−0.034∗∗

(0.013)
−0.013
(0.027)

0.406∗∗∗

(0.095)
0.503∗∗∗

(0.095)

−0.303∗∗∗

(0.073)
0.075∗

(0.038)
0.176∗∗

(0.067)
0.675∗∗∗

(0.071)

107
0.561
0.401
2.009

(0.366)
0.133

(0.716)

Notes: The lag of the dependent variable is denoted by GVOLm
t−1. The sample period goes from

2008/07 until 2017/06. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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The estimation results for the baseline regression are shown in the first column of

Table 3. Volatility shocks to the complete and negative climate change indices have,

respectively, negative and positive effects on the volatilities of the stock returns of oil

and gas companies. When including both indices in the analysis, we expect to be able

to distinguish the effects of each on the global volatility factor. The results provide

empirical evidence that both climate change volatility shocks affect the volatilities of oil

and gas stock returns. Nevertheless, bad news tends to create larger effects (with higher

magnitude) compared to any other news about climate change. The Ljung-Box AR(1)

test statistic for the model without the lagged dependent variable is 4.365 (0.037). To

model the time dependence in the data we add the oil and gas volatility shocks once

lagged in the final estimated model.

The positive coefficient of the bad news index (0.055) indicates that unexpected volatil-

ity shocks driven by bad news about climate change are associated with larger oil and

gas common volatility shocks. When arising from any other climate change news, the

resulting oil and gas volatility shocks are estimated to be smaller (−0.032). By including

the negative news index, we hope that the complete news index is able to mostly capture

the effect of positive news about climate change. This seems to be supported by the neg-

ative sign of the estimated coefficient for the general climate change determinant. Good

news about climate change makes investors feel more confident about the future of oil and

gas leading to smaller oil and gas unexpected volatility shocks. Bad news about climate

change is more likely to cause major changes in the stock prices of oil and gas companies

as it creates more uncertainty regarding the viability of investments in such assets. This

follows the literature on the asymmetric effects of positive and negative news on volatility.

It is well known that negative shocks to stock prices produce more volatility than positive

shocks. Similarly, the magnitude of the effect of climate change volatility shocks on the

volatilities of oil and gas stock returns is greater when the news is bad compared to any

other news.

Regarding the other determinants, both stock market and oil volatility shocks can be

represented as common shocks moving global oil and gas stock returns. Recall that some

of the largest oil and gas common volatility shocks coincide with days when OPEC has
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made decisions regarding oil production, decisions that have mostly been different from

what markets were expecting or hoping for. Moreover, these appear to also coincide with

large volatility shocks to the oil returns (as measured by the changes in the price of the

WTI 1-month future). Hence, oil volatility shocks (driven mostly by oil supply shocks)

tend to cause large unexpected variations in a wide range of stock returns.

In order to analyze if the effects of stock market and oil volatility shocks change when

there is simultaneously climate change news affecting the market, we also include inter-

action terms between these two indicators and each of the climate change news variables.

The results are presented in the second and the third column for the interactions terms

using, respectively, the complete news and the bad news indicator. Beginning with the oil

shocks, it is interesting to observe that bad news on climate change tend to amplify the

effects of oil shocks on volatilities. Think about the drone attack to the Saudi Aramco

oil facility in Saudi Arabia on November 30, 2016. The disruption in oil production had

an immediate impact on oil prices around the world and the effects on the stock prices

of major oil companies followed suit. Now imagine that on the same day devastating

wildfires hit Australia raising concerns about climate change both in terms of physical

and transition risks. The bad climate change news thus amplifies the positive effect of oil

volatility shocks on oil and gas volatilities. It seems that when there is a stock market

volatility shock and a simultaneous bad climate change news, this shock attenuates the

effects of the former. This may be due to the negative correlation (−0.179) between the

volatility shocks arising from bad climate change news and stock market news.

Interestingly, oil volatility shocks (as measured by the proportional difference between

the squared oil idiosyncrasy and its expectation and denoted by WTI) are not determined

by the climate change volatility shocks nCC. A linear regression of WTI on both CC and

nCC shows no statistically significant effects of climate change on the prices of oil. Instead,

investors appear to be reacting to climate change news based only on the investments in

oil and gas firms. This is also likely to be reflecting the fact that demand for oil is quite

inelastic. The estimation results are presented in Table 4.

As a robustness check, we obtain similar results if the S&P 500 index and WTI 1-

month oil future standardized residuals are not included in the sample for estimating the

22



global volatility factor. Also, results are consistent if the WTI 1-month oil future is not

included as an additional regressor in the mean equations.

Table 4: Estimation results for the effect of volatility shocks to the complete (CCt) and
negative (nCCt) climate change news index on the volatility shocks to the S&P 500 index
(SPXt) and the WTI oil 1-month future (WTIt).

SPXt

CCt 0.006
(0.015)

nCCt −0.043∗

(0.023)
Constant 0.027

(0.043)

Observations 108
R2 0.034
σ̂ 0.447
χ2
AR(1) 2.184

(0.139)
χ2
ARCH(1) 0.039

(0.844)

WTIt

0.001
(0.015)

0.002
(0.024)

0.004
(0.045)

108
0.000
0.464
0.226

(0.635)
0.113

(0.736)

Notes: The sample period goes from 2008/06 until
2017/06. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

It is commonly thought that climate change is likely to induce structural changes in the

financial system (Network for Greening the Financial System, 2019). To allow for richer

structures of the global volatility process, including dynamics, structural changes, outliers

or time-varying parameters, we apply the indicator saturation approach introduced by

Hendry (1999) to the second moment. By applying step indicator saturation (Hendry

et al., 2008), climate change is interpreted as a source of structural change affecting the

financial system by means of shifts in the global volatility process. To check if some of the

spikes in the monthly oil and gas volatility factor are driving spurious relations between

the climate change news and the financial market volatility shocks, we re-run regressions

(2) and (3) in Table 3 to include impulse indicators as well. Parameter shifts as in

the effect of climate change news on the global volatility factor by using multiplicative

indicator saturation (Ericsson, 2012) is left for future research.

Including impulse and step indicator saturation (so-called super saturation Ericsson

(2012)) seems to improve the empirical results in the new regressions presented in Table

5 as spikes appear to be only introducing noise. The statistically significant impulse
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Table 5: Estimation results for the determinants of oil and gas volatility shocks when
impulse and step indicator saturation is applied.

(1)

CCt −0.025∗∗

(0.011)
nCCt 0.025

(0.019)
SPXt 0.359∗∗∗

(0.086)
WTIt 0.533∗∗∗

(0.084)
SPXt × CCt −0.023

(0.044)
WTIt × CCt −0.015

(0.044)
SPXt × nCCt

WTIt × nCCt

Constant 0.748∗∗∗

(0.080)

Observations 108
R2 0.748
σ̂ 0.447
χ2
AR(1) 0.149

(0.699)
χ2
ARCH(1) 0.209

(0.648)

(2)

−0.033∗∗∗

(0.011)
−0.027
(0.021)

0.289∗∗∗

(0.083)
0.440∗∗∗

(0.080)

−0.316∗∗∗

(0.061)
0.090∗∗∗

(0.031)
1.332∗∗∗

(0.238)

108
0.759
0.322
0.005

(0.942)
0.146

(0.703)

Note: The sample period goes from 2008/05 until 2017/06.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

and step indicators are shown in Table 6. These are the selected indicators at the 5%

significance level and applying indicator saturation by blocks. Note that indicators only

capture effects that are not otherwise accounted for by the regressors.

In order to analyse if the impact of climate change news on global oil and gas volatility

changes across different types of news, we use another index to constrict the climate change

volatility shocks. The Media Climate Change Concerns (MCCC) index of Ardia et al.

(2020) is intended to measure unexpected increases in climate change concerns. It is a

daily index constructed by applying text mining to climate change-related news published

by major U.S. newspapers. The selected high-reaching (daily circulation of more than

500,000) newspapers are: (i) The Wall Street Journal, (ii) The New York Times, (iii)

The Washington Post, (iv) The Los Angeles Times, (v) The Chicago Tribune, (vi) USA
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Table 6: The impulse and step indicators in the regressions summarized in Table 5.

(1)

IIS2008.07 1.633∗∗∗

(0.344)
IIS2008.10 1.960∗∗∗

(0.344)
IIS2016.11

SIS2008.10

SIS2010.04 0.662∗∗∗

(0.211)
SIS2010.07 −1.064∗∗∗

(0.276)
SIS2010.10 0.700∗∗∗

(0.230)
SIS2011.05 −0.893∗∗∗

(0.271)
SIS2011.07 0.652∗∗

(0.249)
SIS2014.10 1.128∗∗∗

(0.260)
SIS2014.12 −1.203∗∗∗

(0.285)
SIS2015.07 0.611∗∗∗

(0.179)
SIS2016.03 −0.526∗∗∗

(0.152)
Constant 0.748∗∗∗

(0.080)

Observations 108
R2 0.748
σ̂ 0.447
χ2
AR(1) 0.149

(0.699)
χ2
ARCH(1) 0.209

(0.648)

(2)

1.078∗∗∗

(0.398)
1.857∗∗∗

(0.336)
1.055∗∗∗

(0.342)
−0.643∗∗

(0.249)
0.554∗∗∗

(0.210)
−0.945∗∗∗

(0.268)
0.486∗∗

(0.191)

0.506∗∗∗

(0.125)
−0.567∗∗∗

(0.146)
1.332∗∗∗

(0.238)

108
0.759
0.322
0.005

(0.942)
0.146

(0.703)

Note: The sample period goes from 2008/05 until 2017/06.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Today, (vii) New York Daily News, and (viii) The New York Post. The MCCC index is

available from January 2, 2003 until June 29, 2018.
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Figure 6: The daily MCCC index (grey) and 22-day rolling window average (black).

In order to compare the climate change daily volatility shocks to the oil and gas global

volatility over time, we compute a 22-day rolling window average from the daily point

estimates. This averaged series is plotted in figure 7.
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Figure 7: The daily oil and gas global volatility points (grey) and its 22-day rolling window
average (black).

We start by computing the first difference of the MCCC index to make the time

series stationary. There is strong evidence for time dependence in both first and second

moments according to, respectively, the AR and ARCH tests results. By using this new

variable as an additional factor in the oil and gas return regressions, it appears there is

no statistically significant impact of MCCC on the oil and gas returns over time. These

results could also be shown in the paper as they differ from Ardia et al. (2020). However,

shocks to the volatility of the MCCC do affect the common volatility driving the oil and

gas stock returns as shown in table 7. There is no evidence of time dependence in the

first or second moment of the residuals from all regressions. To save space, the results

from the AR(2) and ARCH(2) tests are not reported.
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Table 7: The effects of MCCC volatility shocks on oil and gas global volatility (GVOL),
the dependent variable.

(1) (2) (3) (4) (5)

GVOLt−1 − 0.031∗∗ − 0.031∗∗ − 0.031∗∗ − 0.031∗∗ − 0.032∗∗

MCCCt 0.029∗ 0.030∗ 0.027∗ 0.030∗ 0.028∗

WTIt 0.235∗∗∗ 0.235∗∗∗ 0.233∗∗∗ 0.236∗∗∗ 0.233∗∗∗

XLEt 0.435∗∗∗ 0.434∗∗∗ 0.432∗∗∗ 0.435∗∗∗ 0.431∗∗∗

SPXt − 0.024 − 0.024 − 0.024 − 0.025 0.024

MCCCt × WTIt − 0.005 − 0.005
MCCCt × XLEt − 0.022∗ − 0.019
MCCCt × SPXt − 0.012 − 0.005

Observations 3,899 3,899 3,899 3,899 3,899
R2 0.229 0.229 0.230 0.230 0.230
Adjusted R2 0.228 0.228 0.229 0.228 0.228
Residual Std. Error 1.636 1.636 1.636 1.635 1.636
F Statistic 231.549∗∗∗ 192.969∗∗∗ 193.680∗∗∗ 193.268∗∗∗ 145.257∗∗∗

Similarly to the results presented in table 5, by applying impulse and step indicator

saturation, we observe a structural increase in the oil and gas global volatility in 2010

and then again in 2017.

Table 8: The effects of MCCC on GVOL over time. IISY is a yearly impulse indicator
assuming value 1 when return in observed in year Y . SISY is a yearly step indicator taking
value 0 when returns are observed in a year previous to year Y and 1 when observed in
and after year Y . Showing only the statistically significant coefficients.

GVOLt−1 − 0.038∗∗∗

WTIt 0.235∗∗∗

XLEt 0.418∗∗∗

IIS2008 0.401∗∗∗

MCCC 0.048
MCCC × SIS2010 0.197∗∗

MCCC × SIS2017 0.169∗

Observations 3,899
R2 0.236
Adjusted R2 0.229
Res. Std. Error 1.635
F Statistic 35.117∗∗∗

Investors in fossil fuel companies are now pricing climate change risks. Using world’s

major oil and gas stock prices, our empirical evidence shows that investors are reacting to

climate change news, especially when the news is bad. Aggregating news by topics and
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themes provides a more comprehensive analysis of the impact of different news on the oil

and gas stock prices. In particular, investors in fossil fuel companies around the world

seem to be more volatile following news on the agricultural impact of climate change

(Table 9, first column) where the effect of news involving livestock (topic 20 in the second

column of Table 9) on the oil and gas global equity market is particularly pronounced.

Similar effects are expected on agri-business assets, where increased attention and pressure

have been raised due to climate-damaging practices in agriculture 1. For a similar analysis

by theme including indicators to account for outliers and structural changes in GVOL,

and structural changes in the relationship between GVOL and MCCC see Appendix A.

Table 9: The effects of MCCC on GVOL by theme. MCCC themes were computed as
the average of the topics included in each theme following the classification proposed by
Ardia et al. (2020).

GVOLt−1 − 0.033∗∗

WTIt 0.236∗∗∗

XLEt 0.420∗∗∗

Financial & Regulation 0.029∗

Agreement & Summit − 0.005
Public Impact 0.025∗

Research − 0.005
Disaster − 0.019∗

Environmental Impact − 0.015
Agricultural Impact 0.022∗∗∗

Observations 3,899
R2 0.232
Adjusted R2 0.230
Res. Std. Error 1.634
F Statistic 117.589∗∗∗

− 0.035∗∗

0.238∗∗∗

0.422∗∗∗

topic11 0.020∗∗

topic20 0.013∗∗∗

topic25 0.011∗

topic31 0.015∗∗∗

topic33− 0.008∗

topic34 0.008∗∗

topic40 0.018∗∗∗

3,899
0.242
0.233
1.631
28.592∗∗∗

The ten words with the highest probability for selected topics (only the statistical

significant topics as shown in table 9) in each theme are the following:

• Financial & Regulation

topic40 project, technology, plant, cost, coal, carbon dioxide, power plant,

facility, scale, carbon.

1Using stock prices of the largest US meat processing company, the American Tyson Foods, climate
change bad news has an adverse (positive) effect on the volatility of the Tyson Foods stock price and
climate change general news appears to exacerbate the effects of stock market shocks.
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topic31 oil, tax, fuel, price, carbon tax, production, taxis, cost, ethanol, rev-

enue.

topic25 money, program, budget, development, fund, funding, effort, initia-

tive, aid, poverty.

• Public Impact

topic34 poll, survey, majority, public, pew, penguin, concern, opinion, result,

support.

topic11 child, school, student, family, woman, life, street, art, event, police.

• Disaster

topic33 fire, wildfire, insurance, risk, home, property, disaster, loss, flood,

zone.

• Agricultural Impact

topic20 food, animal, meet, cow, cattle, farm, ski, resort, beef, diet.

For more details and other topics, we refer to Ardia et al. (2020).

5 Policy implications and future work

Co-movements of financial market volatilities are caused by global shocks which can orig-

inate from political (e.g. the Brexit) and regulatory (carbon prices) actions, pandemics

(COVID-19) or natural disasters. Climate change requires global action and global energy

transition. Given this geopolitical nature of climate change transitional (and physical)

risk we propose an approach based on a global volatility factor of carbon intensive asset

returns to measure and hedge against geo-climatic risk. The novel approach allows us to

analyze whether and to what extent the prices of a very wide range of carbon intensive

assets traded in a particular stock exchange (to avoid asynchronicity) react to the arrival

of new information related to climate change. Results also provide the means to bridge

the co-movements of financial asset volatilities (or geopolitics whose risk is measured by
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the common shocks that drive all markets to move at the same time) to climate change

news with global impact (geo-climate).

As time for an orderly transition to low carbon economies runs out, the likelihood of

extreme and global climate-related shocks to carbon-intensive asset prices rises and so does

the likelihood of huge unexpected losses. It is well known that oil global shocks impact

the real economy with effects across all sectors of activity and countries around the world.

Financial markets are however not prepared to cope with such shocks where a wide range

of assets are affected at the same time, including not only high but also low carbon due

indirectly to the aggregate demand effects. There is a remarkably high uncertainty around

future demand for fossil fuels due to climate change and, more recently, the COVID-19

pandemic (when for the first time in history, oil futures were trading at negative prices

showing how global shocks can have unprecedented effects on oil prices) as well as future

supply following the Saudi Arabia and Russia price war. By their political power, wealth,

and expertise, fossil fuel companies should be proactive in the transition process towards

low-carbon economies. Because the incentives (mostly moral) to shareholders are not

enough, governments in countries highly dependent on fossil fuels shall pressure them by

applying carbon taxes, taking legal action, financing green activities in order to make

them more competitive, and greening their financial systems.

Some challenges may difficult the transition process and once again policy action will

be determinant. Country data shows that it is possible to reduce CO2 emissions and

experience economic growth. But history has also shown that CO2 emissions tend to rise

after economic or financial crises. Moreover, oil prices have been remarkably low and oil

companies are among the highest dividend payers meaning transition to clean energies

will be even more challenging as non-fossil fuels become relatively less competitive. As

demand for oil starts giving signs of stagnation in some developed countries, there is a

need to regulate oil companies from shifting to developing countries such as India and

China and investing in oil exploration and production capacity. Because emissions are

likely to grow elsewhere, especially in developing countries, it may be desirable to identify

the connections of firms to the rest of the world through international relations, trade and

financial contracts. Investors and risk managers from firms everywhere will be able to see
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how important e.g. OPEC or government plans announcements are and how effective

hedging strategies can be. We thus expect to provide valuable information for banks,

pension fund managers (there seems to be smaller exposure of top banks relatively to

pension funds), insurers and investors to hedge against global risk arising from climate

change. The global volatility model can also be analyzed for other major carbon-intensive

companies around the world (car manufacturers, aerospace corporations, construction

companies) and analyze the relationship between the magnitude of the factor loadings

and the structure and composition of oil production and demand.

Virtually all assets are exposed to transition risk with different magnitudes meaning

some assets are more responsive than others. Thus, assets with bigger volatility factor

loadings are expected to be the more exposed to climate change risk because the more

uncertain investors are regarding the profitability of their investments, and the more

volatility shocks can be attributed to climate-related common events. Because volatilities

are correlated, a common shock will sharply increase the volatility of a portfolio. Although

it is not possible in this framework to predict when such a shock will occur (even tough we

can predict future scenarios), it is possible to form portfolios with reduced impact. This

important feature of the global volatility model leads to a new criterion for portfolio opti-

mality, intended to reduce the exposure to this type of risk. Hence, if the index loadings

on assets or sectors differ, it is possible to reduce (but not eliminate) the exposure to this

form of risk. A stable portfolio should be relatively insensitive to climate global volatility

and would prevent market turmoil during the transition process. As the probability of a

disordered transition increases, uncertainty is likely to drive financial market turmoil and

pose increased risks to financial stability. Investors are already pricing climate change

risks but to what extent are companies or firms reacting and changing accordingly? This

would give insight on when and how policy makers should take action. As a policy instru-

ment, the government and central banks can take positions on the geo-climate volatility

index and help investors to diversify their portfolios during the transition process. At

the global scale, it would improve responses to tackle climate change as agreed by the

Paris agreement. The role of the financial system in managing climate-related risks and

mobilizing capital for low-risk investments is crucial (Network for Greening the Financial
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System, 2019). Our contribution to identifying the high and low risk assets, designing

financial regulations and guiding capital flows seems promising.

At the national level we can consider financial assets traded, for instance, in the Lon-

don Stock Exchange. As a proxy for climate change risks, a news index similar to the

ones used in this paper can be constructed by applying text mining to high-reaching

newspaper’s content such as, for instance, The Financial Times for the United Kingdom.

This is particularly relevant given the pressure for a green COVID-19 recovery and the

United Kingdom’s government 10-point green plan to build back better including to make

London ”the global centre of green finance” (Department for Business, Energy & Indus-

trial Strategy, 2020). Information about the exposure of companies to common, global

or geo-climatic risks is scarce. To promote more informed investing, lending, and insur-

ance underwriting decisions, organizations across all sectors are recommended to disclose

climate-related financial information (Task Force on Climate-related Financial Disclo-

sures, 2017). But interpret and draw comparisons out of such load of non-harmonized

information is difficult.

Given mostly large companies are publicly traded, results can then be extended to

virtually all companies in a country by matching the ones that run similar business ac-

tivities using standard industrial classification. Matching allows us to identify companies

at different levels of climate change risk, to assess potential financial losses, to analyze

the structure of vulnerable employment, and to define the scale of adjustment towards a

resilient financial and economic systems in the pandemic and net-zero era. This allows us

to define the scale of adjustment that will need to be undertaken to build and maintain

a resilient financial system in the future. It would also help in targeting the financial and

non-financial organizations with public debt or equity more exposed to climate risk and

focusing efforts in implementing recommendations listed in Task Force on Climate-related

Financial Disclosures (2017). This includes asset managers and asset owners, public- and

private-sector pension plans, endowments, and foundations. The results can give insight

about the structure of vulnerable labor and on how design readjustment policies to help

employees at risk entering the changing labor market.

Investing in activities that are not viable in a low carbon economy makes investors less
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resilient to climate change risks and more exposed to financial losses. Missed sustainable

activities due to the reluctance arising from the lack of information on the exposure

to climate-related risks, which would otherwise be profitable, create employment and

generate income are also likely in a low-carbon transition scenario. It is important to

properly but efficiently identify entities at different levels of risk, to consider climate

risks into governance and to run scenario analyses to explore the financial risks posed by

climate change, including the resilience of the current business models of the largest banks,

insurers and the financial system. Models of common volatility shocks in conjunction with

climate change shocks could be used to assess the vulnerability or resilience of the financial

system as well as study the predictability of such shocks and how they might propagate

both across assets and over time. These results provide a valuable contribution of national

importance and international standing to achieve a resilient financial services sector to

climate-related risks.

6 Conclusions

Climate change risk, specifically transition risk, is regarded as a source of geopolitical risk.

Climate change news affecting financial markets is expected to affect the volatilities of all

brown assets. We take a sample of oil and gas stock prices and apply a model of global

volatility factors to capture common volatility shocks affecting simultaneously all assets.

To analyze to what extent climate change news is affecting financial markets, we then

link the common volatility shocks to climate change volatility shocks while controlling

for other types of volatility shocks, namely stock market and oil shocks. We find strong

evidence that climate change news drives volatility surprises for the oil and gas assets but

the same is not found for the oil 1-month future. Instead, it seems that the effects of

climate change on oil prices are masked by the oil and gas companies. This is due to the

fact that volatility shocks driven by climate change news amplify the effects of volatility

shocks arising from the crude oil price.

33



Acknowledgements

Part of this work was developed while the first author was visiting the Department of

Statistical Sciences of the University of Padova in Padua, Italy. The first author is in-

debted to Massimiliano Caporin for his kind hospitality, and the very helpful comments

and guidance in the initial phase of the investigation. We thank the participants in the

2020 European Geosciences Union Virtual Session on Economics and Econometrics of

Climate Change and in the 2020 World Congress of the Econometric Society Session on

Climate Change Modeling. The financial support provided through the Young Investiga-

tor Training Program research prize by the ACRI Foundation and IV Econometric Models

of Climate Change Conference at the University of Milan-Bicocca on August 29-30, 2019,

and from the Robertson Foundation (award 9907422) is gratefully acknowledged.

References

Ang, A., R.J. Hodrick, Y. Xing, and X. Zhang, “The cross-section of volatility and

expected returns,” The Journal of Finance, 2006, 61, 259–299.

Ardia, D., K. Bluteau, K. Boudt, and K. Inghelbrecht, “Climate change concerns

and the performance of green versus brown stocks,” 2020. National Bank of Belgium,

Working Paper Research 395. Available at: https://papers.ssrn.com/sol3/papers.

cfm?abstract_id=3717722.

Battiston, S., A. Mandel, I. Monasterolo, and Visentin G. Schutze F., “A

climate stress-test of the financial system,” Nature Climate Change, 2017, 7, 283–288.

Bolton, Patrick and Marcin T. Kacperczyk, “Do Investors Care about Carbon

Risk?,” Journal of Financial Economics, forthcoming.

BP, “Statistical Review of World Energy,” 2020. London: British Petroleum Co, 69th

edition. Available at: https://www.bp.com/content/dam/bp/business-sites/

en/global/corporate/pdfs/energy-economics/statistical-review/

bp-stats-review-2020-full-report.pdf.

Connor, G., R.A. Korajczyk, and O. Linton, “The common and specific components

of dynamic volatility,” Journal of Econometrics, 2006, 132, 231 – 255.

Department for Business, Energy & Industrial Strategy, “The Ten

Point Plan for a Green Industrial Revolution,” 2020. Available at: https:

//assets.publishing.service.gov.uk/government/uploads/system/uploads/

attachment_data/file/936567/10_POINT_PLAN_BOOKLET.pdf.

Diebold, F.X. and G.D. Rudebusch, “On the Evolution of U.S. Temperature Dy-

namics,” 2019. PIER Working Paper No. 19-012, July 2019. Available at: https:

//ssrn.com/abstract=3416665.

34

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3717722
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3717722
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/936567/10_POINT_PLAN_BOOKLET.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/936567/10_POINT_PLAN_BOOKLET.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/936567/10_POINT_PLAN_BOOKLET.pdf
https://ssrn.com/abstract=3416665
https://ssrn.com/abstract=3416665


Dietz, S., A. Bower, C. Dixon, and P. Gradwell, “Climate value at risk of global

financial assets,” Nature Climate Change, 2016. Letter.

Engle, R.F. and S. Campos-Martins, “Measuring and Hedging Geopolitical

Risk,” 2020. September 1, 2020. Available at: https://ssrn.com/abstract=

3685213orhttp://dx.doi.org/10.2139/ssrn.3685213.

, S. Giglio, H. Lee, B.T. Kelly, and J. Stroebel, “Hedging Climate Change News,”

The Review of Financial Studies, 2020, 33, 1184–1216.

Ericsson, N.R., “Detecting Crises, Jumps, and Changes in Regime,” 2012. Working

paper, Federal Reserve Board of Governors, Washington, D.C., USA.

Griffin, Paul, David Lont, and Martien Lubberink, “Extreme High Surface Tem-

perature Events and Equity-Related Physical Climate Risk,” Weather and Climate

Extremes, 2019, 26, 100220.

Hastie, T., R. Tibshirani, and J.Friedman, “The Elements of Statistical Learning:

Data Mining, Inference, and Prediction,” 2009. 2nd edition. New York City, USA:

Springer.

Hendry, D.F., “An Econometric Analysis of US Food Expenditure, 1931-1989,” 1999.

In J. R. Magnus and M. S. Morgan (Eds.), Methodology and Tacit Knowledge: Two

Experiments in Econometrics (pp. 341–361). Chichester: John Wiley and Sons.

, S. Johansen, and C. Santos, “Automatic Selection of Indicators in a Fully Satu-

rated Regression,” Computational Statistics, 2008, 33, 317–335. Erratum, 337–39.

Herskovic, B., B. Kelly, H. Lustig, and S. Van Nieuwerburgh, “The common

factor in idiosyncratic volatility: Quantitative asset pricing implications,” Journal of

Financial Economics, 2016, 119, 249–283.

Leaton, J., “Unburnable carbon - Are the world’s financial markets carrying a carbon

bubble,” 2012. Carbon Tracker Initiative.

Network for Greening the Financial System, “A call for action - Climate change

as a source of financial risk,” 2019. Central banks and supervisors first comprehen-

sive report, April 2019. Available at: https://www.ngfs.net/sites/default/files/

medias/documents/synthese_ngfs-2019_-_17042019_0.pdf.

Task Force on Climate-related Financial Disclosures, “Recommendations of

the Task Force on Climate-related Financial Disclosures,” 2017. Final Report,

June 2017. Available at: https://assets.bbhub.io/company/sites/60/2020/10/

FINAL-2017-TCFD-Report-11052018.pdf.

35

https://ssrn.com/abstract=3685213 or http://dx.doi.org/10.2139/ssrn.3685213
https://ssrn.com/abstract=3685213 or http://dx.doi.org/10.2139/ssrn.3685213
https://www.ngfs.net/sites/default/files/medias/documents/synthese_ngfs-2019_-_17042019_0.pdf
https://www.ngfs.net/sites/default/files/medias/documents/synthese_ngfs-2019_-_17042019_0.pdf
https://assets.bbhub.io/company/sites/60/2020/10/FINAL-2017-TCFD-Report-11052018.pdf
https://assets.bbhub.io/company/sites/60/2020/10/FINAL-2017-TCFD-Report-11052018.pdf


A MCCC and GVOL by theme over time.

36



T
ab

le
10

:
T

h
e

eff
ec

ts
of

M
C

C
C

on
G

V
O

L
b
y

th
em

e
ov

er
ti

m
e.

F
in

an
ci

al
&

A
gr

ee
m

en
t

P
u
b
li
c

R
es

ea
rc

h
D

is
as

te
r

E
n
v
ir

on
m

en
ta

l
A

gr
ic

u
lt

u
ra

l
R

eg
u
la

ti
on

&
S
u
m

m
it

Im
p
ac

t
Im

p
ac

t
Im

p
ac

t

G
V

O
L
t−

1

W
T

I t
X

L
E
t

th
em

e
th

em
e
×

S
IS

2
0
0
4

th
em

e
×

S
IS

2
0
0
5

th
em

e
×

S
IS

2
0
0
6

th
em

e
×

S
IS

2
0
0
7

th
em

e
×

S
IS

2
0
0
8

th
em

e
×

S
IS

2
0
0
9

th
em

e
×

S
IS

2
0
1
0

th
em

e
×

S
IS

2
0
1
1

th
em

e
×

S
IS

2
0
1
2

th
em

e
×

S
IS

2
0
1
3

th
em

e
×

S
IS

2
0
1
4

th
em

e
×

S
IS

2
0
1
5

th
em

e
×

S
IS

2
0
1
6

th
em

e
×

S
IS

2
0
1
7

th
em

e
×

S
IS

2
0
1
8

O
b
se

rv
at

io
n
s

R
2

A
d
ju

st
ed

R
2

R
es

.
S
td

.
E

rr
or

F
S
ta

ti
st

ic

−
0.

03
9∗
∗∗

0.
23

6∗
∗∗

0.
41

5∗
∗∗

0.
11

3
0.

08
9

−
0.

27
7∗
∗

0.
13

3
−

0.
10

5
0.

02
5

0.
00

7
0.

01
5

−
0.

02
5

−
0.

01
3

0.
08

7
0.

02
4

−
0.

02
7

−
0.

07
6

0.
15

5∗

−
0.

12
8

3,
89

9
0.

23
6

0.
23

0
1.

63
5

35
.1

75
∗∗
∗

−
0.

03
8∗
∗∗

0.
23

5∗
∗∗

0.
41

7∗
∗∗

0.
03

3
0.

17
4

−
0.

15
9

−
0.

04
4

−
0.

02
6

0.
11

2
−

0.
08

5
0.

07
7

−
0.

09
1∗
∗

−
0.

01
8

−
0.

03
2

0.
09

4
−

0.
07

4
−

0.
00

4
0.

02
1

0.
00

8

3,
89

9
0.

23
5

0.
22

9
1.

63
5

35
.0

03
∗∗
∗

−
0.

03
8∗
∗∗

0.
23

5∗
∗∗

0.
41

8∗
∗∗

0.
10

5
0.

06
2

−
0.

16
9∗

−
0.

02
0

0.
03

6
0.

00
1

−
0.

07
4

0.
16

2
−

0.
07

4
0.

04
5

−
0.

18
0∗
∗

0.
19

1∗
∗∗

−
0.

09
0

−
0.

04
6

0.
13

0
−

0.
00

8

3,
89

9
0.

23
7

0.
23

0
1.

63
4

35
.2

26
∗∗
∗

−
0.

03
9∗
∗∗

0.
23

5∗
∗∗

0.
41

6∗
∗∗

−
0.

00
4

0.
00

6
0.

04
5

−
0.

00
6

0.
03

1
−

0.
09

8
0.

06
8

−
0.

05
6

0.
00

8
−

0.
00

2
−

0.
02

0
0.

10
6∗

−
0.

11
1∗
∗

−
0.

06
5

0.
05

7
−

0.
02

7

3,
89

9
0.

23
5

0.
22

8
1.

63
6

34
.9

23
∗∗
∗

−
0.

03
9∗
∗∗

0.
23

5∗
∗∗

0.
41

7∗
∗∗

0.
15

9∗
∗

−
0.

16
0∗
∗

−
0.

02
1

0.
00

1
0.

03
7

−
0.

00
7

−
0.

01
6

−
0.

05
0

0.
05

4
0.

00
4

−
0.

03
4

0.
00

6
0.

00
1

−
0.

02
1

0.
04

8
0.

00
8

3,
89

9
0.

23
4

0.
22

7
1.

63
7

34
.7

26
∗∗
∗

−
0.

03
9∗
∗∗

0.
23

4∗
∗∗

0.
42

0∗
∗∗

0.
11

3∗
∗

−
0.

08
9

−
0.

03
0

−
0.

03
0

0.
07

0
−

0.
12

5∗
∗

0.
05

0
0.

07
2

−
0.

01
1

−
0.

04
2

−
0.

02
6

0.
03

1
0.

02
1

−
0.

00
6

−
0.

02
9

0.
02

9

3,
89

9
0.

23
5

0.
22

8
1.

63
6

34
.9

61
∗∗
∗

−
0.

03
8∗
∗∗

0.
23

6∗
∗∗

0.
41

7∗
∗∗

0.
00

7
0.

11
8∗

−
0.

15
2∗
∗∗

0.
01

9
0.

03
4

−
0.

06
2

0.
04

0
−

0.
00

6
−

0.
01

0
0.

10
2∗
∗∗

−
0.

13
6∗
∗∗

0.
07

3∗

−
0.

04
3

0.
10

0∗
∗∗

−
0.

02
0

−
0.

08
7

3,
89

9
0.

24
3

0.
23

6
1.

62
7

36
.4

77
∗∗
∗

Im
p

u
ls

e
in

d
ic

at
or

s
(I

IS
)

ar
e

n
ot

sh
ow

n
to

sa
ve

sp
ac

e
b

u
t

a
re

in
cl

u
d

ed
in

a
ll

re
g
re

ss
io

n
s.

37


	Introduction
	Modeling volatility comovements of stock returns
	The oil and gas common volatility shocks

	Measuring climate change volatility shocks
	Disentangling the oil and gas volatility shocks
	Policy implications and future work
	Conclusions
	MCCC and GVOL by theme over time.

